精英家教网 > 高中数学 > 题目详情
12.已知矩形ABCD,AB=6,BC=4,经过A、B、C、D四顶点的椭圆(BC经过椭圆的焦点)的离心率是(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{1+\sqrt{10}}$

分析 判断椭圆的焦点坐标所在坐标轴,求出c,利用通经求出a,然后求解离心率.

解答 解:矩形ABCD,AB=6,BC=4,经过A、B、C、D四顶点的椭圆(BC经过椭圆的焦点)
不妨令椭圆的焦点坐标在x轴,
设椭圆方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,
由题意可知(3,2)在椭圆上.c=3,
$\frac{{b}^{2}}{a}=2$,可得a2-c2=2a,解得a=1+$\sqrt{10}$.
椭圆的离心率为:$\frac{3}{1+\sqrt{10}}$.
故选:D.

点评 本题考查椭圆的简单性质,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在锐角△ABC中,∠A、∠B、∠C的对边分别为a、b、c,已知2csinA=$\sqrt{3}$a,sin(B-A)=cosC.
(1)求∠A、∠B、∠C;
(2)若△ABC的面积为3+$\sqrt{3}$,求a、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知等比数列{an},前n项和为Sn,a1+a2=3,a2+a3=6,则S6=63.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于x的方程$\sqrt{2}$sin(x+$\frac{π}{4}$)=2m在[0,π]内有相异两实根,则实数m的取值范围为[$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足条件:a1=t,an+1=2an+1(n∈N*
(1)判断数列{an+1}(n∈N*)是否是等比数列?
(2)若t=1,令Cn=$\frac{{2}^{n}}{{a}_{n}{a}_{n+1}}$,记Tn=C1+C2+C3+…+Cn(n∈N*).求证:①Cn=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$;②Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解不等式:$\frac{2x+1}{x-2}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知P(x,y)是函数f(x)的图象上的一点,$\overrightarrow{a}$=(1,(x-2)5),$\overrightarrow{b}$=(1,y-2x),$\overrightarrow{a}$∥$\overrightarrow{b}$,数列{an}是公差不为零的等差数列,且f(a1)+f(a2)+…+f(a9)=36,则a1+a2+…+a9=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M为PB的中点.
(Ⅰ)求证:AM⊥平面PBC;
(Ⅱ)求二面角A-PC-B的余弦值;
(Ⅲ)证明:在线段PC上存在点D,使得BD⊥AC,并求$\frac{PD}{PC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线x2-y2=4的左右焦点分别为F1,F2,点Pn(xn,yn)(n=1,2,3…)在其左支上,且满足|Pn+1F1|=|PnF2|,P1F1⊥F1F2,则x2015=-4030$\sqrt{2}$.

查看答案和解析>>

同步练习册答案