分析 (1)利用向量数量积运算,求出函数解析式,利用正弦函数的单调性,即可求函数f(x)的单调递增区间;
(2)由f(A)=1,求出A,根据$a=2\sqrt{3}$,c=4,利用余弦定理,求出b,即可求△ABC的面积.
解答 解:(1)∵向量$\overrightarrow{m}$=($\sqrt{3}$sinx-cosx,1)$\overrightarrow{n}$=(cosx,$\frac{1}{2}$),
∴函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$=($\sqrt{3}$sinx-cosx)cosx+$\frac{1}{2}$=sin(2x-$\frac{π}{6}$),
由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ
可得函数f(x)的单调递增区间$[{kπ-\frac{π}{6},kπ+\frac{π}{3}}](k∈z)$.
(2)f(A)=sin(2A-$\frac{π}{6}$)=1,∴A=$\frac{π}{3}$,
∴12=b2+16-4b,∴b=2,
∴△ABC的面积是$\frac{1}{2}×2×4×\frac{\sqrt{3}}{2}$=$2\sqrt{3}$.
点评 本题考查三角函数的图象与性质,考查向量数量积运算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α⊥γ,β⊥γ,则α∥β | B. | 若l1∥α,l1⊥β,则α∥β | ||
| C. | 若α∥β,l1∥α,l2∥β,则l1∥l2 | D. | 若α⊥β,l1⊥α,l2⊥β,则l1⊥l2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$或-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12斤 | B. | 15斤 | C. | 15.5斤 | D. | 18斤 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com