精英家教网 > 高中数学 > 题目详情
3.若x、y满足约束条件$\left\{\begin{array}{l}x+y-1≤0\\ 2x-y+1≥0\\ x-2y-1≤0\end{array}\right.$,则z=x-y的最大值为1.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x+y-1≤0\\ 2x-y+1≥0\\ x-2y-1≤0\end{array}\right.$作出可行域如图,
化目标函数z=x-y为y=x-z,由图可知,
当直线y=x-z过A(1,0)时,
直线在y轴上的截距最小,z有最大值为1.
故答案为:1.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{m}$=($\sqrt{3}$sinx-cosx,1)$\overrightarrow{n}$=(cosx,$\frac{1}{2}$),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$
(1)求函数f(x)的单调递增区间;
(2)若a,b,c为△ABC的内角A,B,C的对边,$a=2\sqrt{3}$,c=4,且f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,一个几何体的三视图中四边形均为边长为4的正方形,则这个几何体的体积为(  )
A.$64-\frac{32π}{3}$B.64-16πC.$64-\frac{16π}{3}$D.$64-\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,设边a,b,c所对的角分别为A,B,C,A,B,C都不是直角,且accosB+bccosA=a2-b2+8cosA
(Ⅰ)若sinB=2sinC,求b,c的值;
(Ⅱ)若$a=\sqrt{6}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图①,这个美妙的螺旋叫做特奥多鲁斯螺旋,是由公元5世纪古希腊哲学家特奥多鲁斯给出的,螺旋由一系列直角三角形组成(图②),第一个三角形是边长为1的等腰直角三角形,以后每个直角三角形以上一个三角形的斜边为直角边,另一个直角边为1.将这些直角三角形在公共顶点处的角依次记为α1,α2,α3,…,则与α1234最接近的角是(  )
参考值:tan55°≈1.428,tan60°≈1.732,tan65°≈2.145,$\sqrt{2}≈1.414$
A.120°B.130°C.135°D.140°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线${C_1}:{y^2}=2px(p>0)$的焦点为F,准线为l,圆${C_2}:{x^2}+{y^2}={p^2}$被直线l截得的线段长为$2\sqrt{3}$.
(1)求抛物线C1和圆C2的方程;
(2)设直线l与x轴的交点为A,过点A的直线n与抛物线C1交于M、N两点,求证:直线MF的斜率与直线NF的斜率的和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$|\begin{array}{l}{sinx}&{2cosx}\\{2cosx}&{sinx}\end{array}|$的最小正周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三  年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:
 班号 一班 二班三班  四班 五班 六班
 频数 5 9 11 9 7 9
 满意人数 4 7 8 5 6 6
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax-lnx.
(1)过原点O作曲线y=f(x)的切线,求切点的横坐标;
(2)对?x∈[1,+∞),不等式f(x)≥a(2x-x2),求实数a的取值范围.

查看答案和解析>>

同步练习册答案