精英家教网 > 高中数学 > 题目详情
12.某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三  年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:
 班号 一班 二班三班  四班 五班 六班
 频数 5 9 11 9 7 9
 满意人数 4 7 8 5 6 6
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.

分析 (1)因为在被抽取的50人中,持满意态度的学生共36人,即可得出持满意态度的频率.
(2)ξ的所有可能取值为0,1,2,3.利用超几何分布列的概率计算公式与数学期望计算公式即可得出.

解答 解:(1)因为在被抽取的50人中,持满意态度的学生共36人,
所以持满意态度的频率为$\frac{18}{25}$,
据此估计高三年级全体学生持满意态度的概率为$\frac{18}{25}$.
(2)ξ的所有可能取值为0,1,2,3.
P(ξ=0)=$\frac{{∁}_{3}^{0}{∁}_{11}^{4}}{{∁}_{14}^{4}}$=$\frac{30}{91}$;$P({ξ=1})=\frac{{C_3^1•C_{11}^3}}{{C_{14}^4}}=\frac{45}{91}$;$P({ξ=2})=\frac{{C_3^2•C_{11}^2}}{{C_{14}^4}}=\frac{15}{91}$;$P({ξ=3})=\frac{{C_3^3•C_{11}^1}}{{C_{14}^4}}=\frac{1}{91}$.
ξ的分布列为:

 ξ 0 1 2 3
 P $\frac{30}{91}$ $\frac{45}{91}$ $\frac{15}{91}$ $\frac{1}{91}$
$Eξ=0×\frac{30}{91}+1×\frac{45}{91}+2×\frac{15}{91}+3×\frac{1}{91}=\frac{6}{7}$.

点评 本题考查了超几何分布列的概率计算公式与数学期望计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是(  )
A.2B.$\frac{1}{2}$C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若x、y满足约束条件$\left\{\begin{array}{l}x+y-1≤0\\ 2x-y+1≥0\\ x-2y-1≤0\end{array}\right.$,则z=x-y的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,AB为圆O的直径且AB=4,C为圆上不同于A、B的任意一点,若P为半径OC上的动点,则($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$的最小值是(  )
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=aln(x+1)-x2,若对?p,q∈(0,1),且p≠q,有$\frac{{f({p+1})-f({q+1})}}{p-q}>2$恒成立,则实数a的取值范围为(  )
A.(-∞,18)B.(-∞,18]C.[18,+∞)D.(18,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设全集U=R,集合A={x|x2-2x-3<0},B={x|x-1≥0},则图中阴影部分所表示的集合为(  )
A.{x|x≤-1或x≥3}B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.二项式${(x-\frac{1}{{\root{3}{x}}})^8}$的展开式中,常数项是28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线kx-3y+3=0与圆(x-1)2+(y-3)2=10相交所得弦长的最小值为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.等差数列{an}和等比数列{bn}中,Sn为数列{an}的前n项和,Tn为数列{bn}的前n项和,若a1=2,S3=12,T2=3,T4=15
(1)求a6
(2)求T6

查看答案和解析>>

同步练习册答案