精英家教网 > 高中数学 > 题目详情
1.直线kx-3y+3=0与圆(x-1)2+(y-3)2=10相交所得弦长的最小值为2$\sqrt{5}$.

分析 由条件可求得直线kx-3y+3=0恒过圆内定点(0,1),则圆心(1,3)到定点的距离为$\sqrt{5}$,因此最短弦长为$2\sqrt{5}$.

解答 解:由条件可求得直线kx-3y+3=0恒过圆内定点(0,1),则圆心(1,3)到定点(0,1))的距离为$\sqrt{5}$,当圆心到直线kx-3y+3=0的距离最大时(即等于圆心(1,3)到定点(0,1))的距离)所得弦长的最小,因此最短弦长为2$\sqrt{{R}^{2}-{d}^{2}}$=$2\sqrt{5}$.
故答案为:2$\sqrt{5}$.

点评 题考查直线和圆的位置关系,以及最短弦问题,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在△ABC中,设边a,b,c所对的角分别为A,B,C,A,B,C都不是直角,且accosB+bccosA=a2-b2+8cosA
(Ⅰ)若sinB=2sinC,求b,c的值;
(Ⅱ)若$a=\sqrt{6}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三  年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:
 班号 一班 二班三班  四班 五班 六班
 频数 5 9 11 9 7 9
 满意人数 4 7 8 5 6 6
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,底面△ABC是等边三角形,侧面AA1B1B为正方形,且AA1⊥平面ABC,D为线段AB上的一点.
(Ⅰ) 若BC1∥平面A1CD,确定D的位置,并说明理由;
(Ⅱ) 在(Ⅰ)的条件下,求二面角A1D-C-BC1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在平面内的动点(x,y)满足不等式$\left\{\begin{array}{l}x+y-3≤0\\ x-y+1≤0\end{array}\right.$,则z=2x+y的最大值是(  )
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ=4cosθ,直线l:$\left\{\begin{array}{l}x=1-\frac{{2\sqrt{5}}}{5}t\\ y=1+\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=sinα\end{array}\right.$(α为参数),曲线C1上点P的极角为$\frac{π}{4}$,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax-lnx.
(1)过原点O作曲线y=f(x)的切线,求切点的横坐标;
(2)对?x∈[1,+∞),不等式f(x)≥a(2x-x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-x2+ax,曲线y=f(x)在点(0,f(0))处的切线与x轴平行.
(Ⅰ)求a的值;
(Ⅱ)若g(x)=ex-2x-1,求函数g(x)的最小值;
(Ⅲ)求证:存在c<0,当x>c时,f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.圆的一条直径的两个端点是(2,0),(0,2)时,则此圆的方程是(  )
A.(x-2)2+(y-1)2=1B.(x-1)2+(y-1)2=2C.(x-1)2+(y+1)2=9D.(x+2)2+(y+1)2=2

查看答案和解析>>

同步练习册答案