精英家教网 > 高中数学 > 题目详情
17.设全集U=R,集合A={x|x2-2x-3<0},B={x|x-1≥0},则图中阴影部分所表示的集合为(  )
A.{x|x≤-1或x≥3}B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}

分析 由阴影部分表示的集合为∁U(A∪B),然后根据集合的运算即可.

解答 解:由图象可知阴影部分对应的集合为∁U(A∪B),
由x2-2x-3<0得-1<x<3,
即A=(-1,3),
∵B={x|x≥1},
∴A∪B=(-1,+∞),
则∁U(A∪B)=(-∞,-1],
故选D.

点评 本题主要考查集合的基本运算,利用Venn图确定集合的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.B.C.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线${C_1}:{y^2}=2px(p>0)$的焦点为F,准线为l,圆${C_2}:{x^2}+{y^2}={p^2}$被直线l截得的线段长为$2\sqrt{3}$.
(1)求抛物线C1和圆C2的方程;
(2)设直线l与x轴的交点为A,过点A的直线n与抛物线C1交于M、N两点,求证:直线MF的斜率与直线NF的斜率的和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a,b,m(m>0)为整数,若a和b
被m除得的余数相同,则称a和b对模m同余,记为a=b(bmodm).若$a=C_{20}^0+C_{20}^1•2+C_{20}^2•{2^2}+…+C_{20}^{20}•{2^{20}}$,a=b(bmod10),则b的值可以是(  )
A.2011B.2012C.2013D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三  年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:
 班号 一班 二班三班  四班 五班 六班
 频数 5 9 11 9 7 9
 满意人数 4 7 8 5 6 6
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=sin(ωx+\frac{π}{6})$,其中ω>0.若$f(x)≤f(\frac{π}{12})$对x∈R恒成立,则ω的最小值为(  )
A.2B.4C.10D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,底面△ABC是等边三角形,侧面AA1B1B为正方形,且AA1⊥平面ABC,D为线段AB上的一点.
(Ⅰ) 若BC1∥平面A1CD,确定D的位置,并说明理由;
(Ⅱ) 在(Ⅰ)的条件下,求二面角A1D-C-BC1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ=4cosθ,直线l:$\left\{\begin{array}{l}x=1-\frac{{2\sqrt{5}}}{5}t\\ y=1+\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=sinα\end{array}\right.$(α为参数),曲线C1上点P的极角为$\frac{π}{4}$,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(n)=k,(n∈N*),k是$\sqrt{2}$小数点后第n位数字,$\sqrt{2}$=1.414213562…,则$\underbrace{f\{f…f[{f(8)}]\}}_{2016个f}$=(  )
A.1B.2C.4D.6

查看答案和解析>>

同步练习册答案