精英家教网 > 高中数学 > 题目详情

(本题12分)
若函数是定义在(1,4)上单调递减函数,且,求的取值范围。

的取值范围为(1,2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知是奇函数,且在定义域(—1,1)内可导并满足解关于m的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知是定义在上的奇函数,且当时,
(1)求上的解析式; 
(2) 证明上是减函数;
(3)当取何值时,上有解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知△ABC是边长为2的正三角形,如图,P,Q依次是AB,AC边上的点,且线段PQ将△ABC分成面积相等的两部分,设AP=x,AQ=t,PQ=y,求:

(1)t关于x的函数关系式;
(2)y关于x的函数关系式;
(3)y的最小值和最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
设函数的定义域为R,当x<0时,>1,且对任意的实数xyR,有.
(1)求,判断并证明函数的单调性;
(2)数列满足,且
①求通项公式;
②当时,不等式对不小于2的正整数
恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数,(x>0).
(1)当0<a<b,且f(a)=f(b)时,求的值 ;   
(2)是否存在实数aba<b),使得函数y=f(x)的定义域、值域都是[ab],若存在,求出ab的值,若不存在,请说明理由.
(3)若存在实数aba<b),使得函数y=f(x)的定义域为 [ab]时,值域为 [mamb],(m≠0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)设为实数,函数.(1)若,求的取值范围;(2)求的最小值;(3)设函数,直接写出(不需给出演算步骤)不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数的定义域恰是能使关于x的不等式对于实数恒成立的充要条件,求的定义域及值域。(12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数论函数的奇偶性,并说明理由.

查看答案和解析>>

同步练习册答案