设数列
的前
项和为
, ![]()
( 1 )若
,求
;
( 2 ) 若
,证明
是等差数列.
科目:高中数学 来源: 题型:解答题
在正项等比数列
中,
,
.
(1) 求数列
的通项公式
;
(2) 记
,求数列
的前n项和
;
(3) 记
对于(2)中的
,不等式
对一切正整数n及任意实数
恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}为等差数列,Sn为其前n项和,且
,
.
(1)求数列{an}的通项公式;
(2)求证数列
是等比数列;
(3)求使得
的成立的n的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列
满足:
(其中常数
).
(1)求数列
的通项公式;
(2)当
时,数列
中是否存在不同的三项组成一个等比数列;若存在,求出满足条件的三项,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义:若数列
对任意
,满足
(
为常数),称数列
为等差比数列.
(1)若数列
前
项和
满足
,求
的通项公式,并判断该数列是否为等差比数列;
(2)若数列
为等差数列,试判断
是否一定为等差比数列,并说明理由;
(3)若数列
为等差比数列,定义中常数
,数列
的前
项和为
, 求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com