精英家教网 > 高中数学 > 题目详情
3.在(x2+$\frac{1}{2x}$)8的展开式中,x7的系数为7.(用数字作答)

分析 利用二项展开式的通项公式求出展开式的通项;令x的指数为7,求出r,即可求出展开式中x7的系数.

解答 解:展开式的通项为Tr+1=($\frac{1}{2}$)rC8rx16-3r
令16-3r=7,解得r=3,
故展开式中x7的系数是($\frac{1}{2}$)3C83=7,
故答案为:7.

点评 本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin(x+$\frac{π}{6}$)-$\frac{1}{2}$cos(x+$\frac{π}{6}$),若存在x1,x2,x3,…,xn满足0≤x1<x2<x3<…<xn≤6π,且|f(x1)-f(x2)|+|f(x2)-f(x3)|+…$+|{f({{x_{n-1}}})-f({x_n})}|=12({n≥2,n∈{N^*}})$,则n的最小值为(  )
A.6B.10C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={x|x(x+1)≤0},集合B={x|2x>1},则集合A∪B等于(  )
A.{x|x≥0}B.{x|x≥-1}C.{x|x>0}D.{x|x>-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的两条渐近线相互垂直,那么双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|x2-3x+2>0},B={x|3x-4>0},则A∩B=(  )
A.(-2,-$\frac{4}{3}$)B.(-2,$\frac{4}{3}$)C.(1,$\frac{4}{3}$)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(-1,$\frac{3}{2}$),其离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l:y=kx+m与椭圆C相切,切点为T,且l与直线x=-4相交于点S.
试问:在x轴上是否存在一定点,使得以ST为直径的圆恒过该定点?若存在,求出该点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.3-2,21.5,log23三个数中最大的数是21.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈R,使sinx-cosx=$\sqrt{3}$,命题q:集合{x|x2-2x+1=0,x∈R}有2个子集,下列结论:
①“p∧q”真命题;②命题“p∧¬q”是假命题;③命题“¬p∨¬q”真命题,正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线y=kx+1(k∈R)与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有两个公共点,则m的取值范围为(1,5)∪(5,+∞).

查看答案和解析>>

同步练习册答案