精英家教网 > 高中数学 > 题目详情
6.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,且z=ax+3y的最小值为7,则a的值为(  )
A.1B.2C.-2D.不确定

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,对a分类讨论可得最优解,联立方程组求得最优解的坐标,代入目标函数即可求得a值.

解答 解:由约束条件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$作出可行域如图,

联立方程组求得A(2,1),B(4,5),C(1,2),
化目标函数z=ax+3y为y=$-\frac{a}{3}x+\frac{z}{3}$.
当a>0时,由图可知,当直线y=$-\frac{a}{3}x+\frac{z}{3}$过A或C时,直线在y轴上的截距最小,z有最小值.
若过A,则2a+3=7,解得a=2;若过C,则a+6=7,解得a=1不合题意.
当a<0时,由图可知,当直线y=$-\frac{a}{3}x+\frac{z}{3}$过A或B时,直线在y轴上的截距最小,z有最小值.
若过A,则2a+3=7,解得a=2,不合题意;若过B,则4a+15=7,解得a=-2,不合题意.
∴a的值为2.
故选:B.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法与分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设$f(x)=\left\{\begin{array}{l}2x+a,x<0\\ x+1,x≥0\end{array}\right.$,若f(x)是单调函数,则a的取值范围为(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=ln(|x|-1)+x的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,且椭圆C经过定点(1,-$\frac{3}{2}$),右顶点为B,过右焦点F1的动直线l与椭圆C相交于P,Q两点,直线PB,QB分别与直线l:x=$\frac{{a}^{2}}{c}$交于E,F.
(1)求椭圆C的标准方程;
(2)设直线PB,QB的斜率分别为k1,k2,证明:k1•k2为定值;
(3)求三角形BEF面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若向量$\overrightarrow{a}$(-3,4),|$\overrightarrow{b}$|=10,求非零向量$\overrightarrow{b}$,使(1)$\overrightarrow{a}$∥$\overrightarrow{b}$;(2)$\overrightarrow{a}$⊥$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知B(m,2b)是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=l(a>0,b>0)的右支上一点,A为右顶点,O为坐标原点,若∠AOB=60°,则该双曲线的渐近线方程为(  )
A.y=±$\frac{{\sqrt{10}}}{2}x$B.y=±$\frac{{\sqrt{13}}}{2}x$C.y=±$\frac{{\sqrt{15}}}{2}x$D.y=±$\frac{{\sqrt{19}}}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若向量$λ\overrightarrow{e_1}-\overrightarrow{e_2}$与$\overrightarrow{e_1}-λ\overrightarrow{e_2}$共线,其中$\overrightarrow{e_1},\overrightarrow{e_2}$为不共线的单位单位向量,则实数λ的值等于±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.奇函数f(x)在(-∞,0)上的解析式是f(x)=x(1+x),则f(x)在(0,+∞)上有(  )
A.最大值$-\frac{1}{4}$B.最大值$\frac{1}{4}$C.最小值$-\frac{1}{4}$D.最小值$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义:对于任意n∈N*,满足条件$\frac{{{a_n}+{a_{n+2}}}}{2}≤{a_{n+1}}$且an≤M(M是与n无关的常数)的无穷数列{an}称为M数列.
(1)若等差数列{bn}的前n项和为Sn,且b2=-3,S5=-25,判断数列{bn}是否是M数列,并说明理由;
(2)若各项为正数的等比数列{cn}的前n项和为Tn,且${c_3}=\frac{1}{4},{T_3}=\frac{7}{4}$,证明:数列{Tn}是M数列,并指出M的取值范围;
(3)设数列${d_n}=|{\frac{p}{n}-1}|({n∈{N^*},p>1})$,问数列{dn}是否是M数列?请说明理由.

查看答案和解析>>

同步练习册答案