9£®Ä³ÉçÇøÓÐ6000¸ö¼ÒÍ¥£¬ÆäÖиßÊÕÈë¼ÒÍ¥1200»§£¬ÖеÈÊÕÈë¼ÒÍ¥4200»§£¬µÍÊÕÈë¼ÒÍ¥600»§£¬Îªµ÷²éÉç»á¹ºÂòÁ¦µÄijÏîÖ¸±ê£¬Òª´ÓÖгéȡһ¸öÈÝÁ¿Îª1000µÄÑù±¾£¬¼Ç×÷¢Ù£»Ä³Ñ§Ð£¸ßÖжþÄê¼¶ÓÐ15ÃûÄÐÀºÔ˶¯Ô±£¬Òª´ÓÖÐÑ¡³ö3È˵÷²éѧϰ¸ºµ£Çé¿ö£¬¼Ç×÷¢Ú£»ÄÇôÍê³ÉÉÏÊöÁ½Ïîµ÷²éÓ¦²ÉÓõÄÈ¡Ñù·½·¨ÊÇ£¨¡¡¡¡£©
A£®¢Ù¼òµ¥Ëæ»ú³éÑù¢Úϵͳ³éÑùB£®¢Ù·Ö²ã³éÑù  ¢Ú¼òµ¥Ëæ»ú³éÑù
C£®¢Ùϵͳ³éÑù¢Ú·Ö²ã³éÑùD£®¢Ù·Ö²ã³éÑù¢Úϵͳ³éÑù

·ÖÎö ´Ó×ÜÌåµÄ¸öÌåÓÐÎÞ²îÒìºÍ×ÜÊýÊÇ·ñ±È½Ï¶àÈëÊÖÑ¡Ôñ³éÑù·½·¨£®

½â´ð ½â£º¢Ù¸öÌåÓÐÁËÃ÷ÏÔÁ˲îÒ죬ËùÒÔÑ¡Ó÷ֲã³éÑù·¨£¬¢Ú¸öÌåûÓвîÒìÇÒ×ÜÊý²»¶à¿ÉÓÃËæ»ú³éÑù·¨£®
¹ÊÑ¡B£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é³éÑù·½·¨µÄÌØµã¼°ÊÊÓ÷¶Î§£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬ÔÚÆ½ÐÐÁùÃæÌåABCD-A1B1C1D1ÖУ¬ÒÑÖª$\overrightarrow{AB}=\overrightarrow a$£¬$\overrightarrow{AD}=\overrightarrow b$£¬$\overrightarrow{A{A_1}}=\overrightarrow c$£¬ÔòÓÃÏòÁ¿$\overrightarrow a$£¬$\overrightarrow b$£¬$\overrightarrow c$¿É±íʾÏòÁ¿$\overrightarrow{B{D_1}}$µÈÓÚ£¨¡¡¡¡£©
A£®$\overrightarrow a+\overrightarrow b+\overrightarrow c$B£®$\overrightarrow a-\overrightarrow b+\overrightarrow c$C£®$\overrightarrow a+\overrightarrow b-\overrightarrow c$D£®$-\overrightarrow a+\overrightarrow b+\overrightarrow c$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªn=${¡Ò}_{0}^{6}$$\frac{1}{3}$xdx£¬Ôò£¨$\frac{\sqrt{x}}{3}$-$\frac{3}{\sqrt{x}}$£©nµÄÕ¹¿ªÊ½ÖÐx2µÄϵÊýΪ£¨¡¡¡¡£©
A£®-$\frac{4}{27}$B£®-$\frac{2}{27}$C£®$\frac{2}{27}$D£®$\frac{4}{27}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}x+1£¨x£¼1£©\\-x+3£¨x¡Ý1£©\end{array}\right.$£¬Ôò$f[f£¨\frac{5}{2}£©]$=£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{5}{2}$C£®$\frac{9}{2}$D£®$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¼ÆË㣨$\root{3}{2}$£©6-$\frac{7}{5}$¡Á£¨$\frac{49}{25}$£©${\;}^{-\frac{1}{2}}}$-3¦Ð0+$\frac{{\sqrt{a\sqrt{a}}}}{{\root{4}{a^3}}}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÈçͼËùʾ£¬Ö±ÈýÀâÖùABC-A1B1C1ÖУ¬CA=CB=1£¬¡ÏBCA=90¡ã£¬ÀâAA1=2£¬M¡¢N·Ö±ðÊÇA1B1¡¢A1AµÄÖе㣮
£¨1£©ÇóÖ¤£ºA1B¡ÍC1M£®
£¨2£©Çócos£¼$\overrightarrow{B{A}_{1}}$£¬$\overrightarrow{C{B}_{1}}$£¾µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-2£¨a-2£©-b2+16=0£®
£¨1£©Èôa¡¢bÊÇһö÷»×ÓÖÀÁ½´ÎËùµÃµ½µÄµãÊý£¬Çó·½³ÌÓÐÁ½Õý¸ùµÄ¸ÅÂÊ£»
£¨2£©Èôa¡Ê[2£¬4]£¬b¡Ê[0£¬6]£¬Çó·½³ÌûÓÐʵ¸ùµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$x2+lnx£®
£¨1£©Çóº¯Êýf£¨x£©ÔÚ[1£¬e]ÉϵÄ×î´óÖµ¡¢×îСֵ£»
£¨2£©µ±x¡Ê[1£¬+¡Þ£©£¬±È½Ïf£¨x£©Óëg£¨x£©=$\frac{2}{3}$x3µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ææº¯Êýf£¨x£©ÊÇRÉϵĺ¯Êý£¬ÇÒµ±x£¾0ʱ£¬º¯ÊýµÄ½âÎöʽΪ$f£¨x£©=\frac{2}{x}-1$
£¨1£©Çóµ±x£¼0ʱ£¬º¯ÊýµÄ½âÎöʽ£®
£¨2£©Ó÷ֶκ¯ÊýÐÎʽд³öº¯Êýf£¨x£©ÔÚRÉϵĽâÎöʽ£®µ±f£¨a£©=3ʱ£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸