精英家教网 > 高中数学 > 题目详情
1.已知关于x的一元二次方程x2-2(a-2)-b2+16=0.
(1)若a、b是一枚骰子掷两次所得到的点数,求方程有两正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程没有实根的概率.

分析 (1)本题是一个古典概型,用(a,b)表示一枚骰子投掷两次所得到的点数的事件,基本事件(a,b)的总数有36个满足条件的事件是二次方程x2-2(a-2)x-b2+16=0有两正根,根据实根分布得到关系式,得到概率.
(2)本题是一个几何概型,试验的全部结果构成区域Ω={(a,b)|2≤a≤4,0≤b≤6},满足条件的事件为:B={(a,b)|2≤a≤4,0≤b≤6,(a-2)2+b2<16},做出两者的面积,得到概率.

解答 解:设“方程有两个正根”的事件为A,
(1)由题意知本题是一个古典概型用(a,b)表示一枚骰子投掷两次所得到的点数的事件
依题意知,基本事件(a,b)的总数有36个,
二次方程x2-2(a-2)x-b2+16=0有两正根,等价于$\left\{\begin{array}{l}{a-2>0}\\{16-{b}^{2}>0}\\{4(a-2)^{2}+4({b}^{2}-16)≥0}\end{array}\right.$
即$\left\{\begin{array}{l}{a>2}\\{-4<b<4}\\{(a-2)^{2}+{b}^{2}≥16}\end{array}\right.$,
则事件A包含的基本事件为(6,1)、(6,2)、(6,3)、(5,3)共4个
∴所求的概率为P(A)=$\frac{1}{9}$;
(2)由题意知本题是一个几何概型,
试验的全部结果构成区域Ω={(a,b)|2≤a≤4,0≤b≤6},
其面积为S(Ω)=12
满足条件的事件为:B={(a,b)|2≤a≤4,0≤b≤6,(a-2)2+b2<16},如图中阴影部分所示,
其面积为S(B)=$\frac{1}{2}×\frac{π}{6}×4×4+\frac{1}{2}×2×\sqrt{16-4}$=$\frac{4π}{3}+2\sqrt{3}$,
∴所求的概率P(B)=$\frac{2π+3\sqrt{3}}{18}$.

点评 本题考查古典概型和几何概型,几何概型和古典概型是高中必修中学习的,高考时常以选择和填空出现,有时文科会考这种类型的解答题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数$y=\sqrt{{x^2}+2ax+1}$的定义域为R,则实数a的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\left\{\begin{array}{l}{x+1(x≥0)}\\{{x}^{2}+2x+1(x<0)}\end{array}\right.$,若矩形ABCD的顶点A、D在x轴上,B、C在函数y=f(x)的图象上,且A(1,0),则点D的坐标为(  )
A.(-2,0)B.(-1-$\sqrt{2}$,0)C.(-1,0)D.(-$\frac{1}{2}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某社区有6000个家庭,其中高收入家庭1200户,中等收入家庭4200户,低收入家庭600户,为调查社会购买力的某项指标,要从中抽取一个容量为1000的样本,记作①;某学校高中二年级有15名男篮运动员,要从中选出3人调查学习负担情况,记作②;那么完成上述两项调查应采用的取样方法是(  )
A.①简单随机抽样②系统抽样B.①分层抽样  ②简单随机抽样
C.①系统抽样②分层抽样D.①分层抽样②系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.焦点在y轴上的椭圆$\frac{{x}^{2}}{k+8}$+$\frac{{y}^{2}}{9}$=1的离心率为$\frac{1}{2}$,则k的值为$-\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a=2${\;}^{\frac{π}{10}}}$,b=logπ3,c=log2sin$\frac{π}{5}$,则(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n≥1且n∈z).
(1)求数列{an}的通项公式;
(2)求数列{nan}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知A、B是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,若在双曲线上存在点P满足2|$\overrightarrow{PA}$+$\overrightarrow{PB}$|≤|$\overrightarrow{AB}$|,则双曲线C的离心率e的取值范围是(  )
A.1<e≤2B.e≥2C.1<e≤$\sqrt{2}$D.e≥$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.正三棱柱ABC-A1B1C1中,若AC=$\sqrt{2}$AA1,则AB1与CA1所成角的大小为(  )
A.60°B.105°C.75°D.90°

查看答案和解析>>

同步练习册答案