精英家教网 > 高中数学 > 题目详情
10.已知A、B是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,若在双曲线上存在点P满足2|$\overrightarrow{PA}$+$\overrightarrow{PB}$|≤|$\overrightarrow{AB}$|,则双曲线C的离心率e的取值范围是(  )
A.1<e≤2B.e≥2C.1<e≤$\sqrt{2}$D.e≥$\sqrt{2}$

分析 利用向量平行四边形法则可得:$\overrightarrow{PA}+\overrightarrow{PB}$=$2\overrightarrow{PO}$,又$|\overrightarrow{PO}|$≥a,根据双曲线上存在点P满足2|$\overrightarrow{PA}$+$\overrightarrow{PB}$|≤|$\overrightarrow{AB}$|,代入即可得出.

解答 解:∵$\overrightarrow{PA}+\overrightarrow{PB}$=$2\overrightarrow{PO}$,在双曲线上存在点P满足2|$\overrightarrow{PA}$+$\overrightarrow{PB}$|≤|$\overrightarrow{AB}$|,
∴$4|\overrightarrow{PO}|$≤2c,又$|\overrightarrow{PO}|$≥a,
∴2a≤c,解得e≥2.
故选:B.

点评 本题考查了双曲线的标准方程及其性质、向量平行四边形法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知n=${∫}_{0}^{6}$$\frac{1}{3}$xdx,则($\frac{\sqrt{x}}{3}$-$\frac{3}{\sqrt{x}}$)n的展开式中x2的系数为(  )
A.-$\frac{4}{27}$B.-$\frac{2}{27}$C.$\frac{2}{27}$D.$\frac{4}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知关于x的一元二次方程x2-2(a-2)-b2+16=0.
(1)若a、b是一枚骰子掷两次所得到的点数,求方程有两正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{2}$x2+lnx.
(1)求函数f(x)在[1,e]上的最大值、最小值;
(2)当x∈[1,+∞),比较f(x)与g(x)=$\frac{2}{3}$x3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x),g(x)定义在同一区间上,f(x)是增函数,g(x)是减函数,且g(x)≠0,则(  )
A.f(x)+g(x) 为减函数B.f(x)-g(x)为增函数C.f(x)•g(x)是减函数D.$\frac{f(x)}{g(x)}$ 是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式$\frac{4}{x-1}$≤x-1的解集是[-1,1)∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图AB是圆O的直径,点C是弧AB上一点,VC垂直圆O所在平面,D,E分别为VA,VC的中点.
(1)求证:DE⊥VB;
(2)若VC=CA=6,圆O的半径为5,求点E到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.奇函数f(x)是R上的函数,且当x>0时,函数的解析式为$f(x)=\frac{2}{x}-1$
(1)求当x<0时,函数的解析式.
(2)用分段函数形式写出函数f(x)在R上的解析式.当f(a)=3时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图甲,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到△A1BE的位置,如图乙.

(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求BC与平面A1CD所成的角.

查看答案和解析>>

同步练习册答案