精英家教网 > 高中数学 > 题目详情
19.已知函数$y=\sqrt{{x^2}+2ax+1}$的定义域为R,则实数a的取值范围是[-1,1].

分析 根据二次根式的性质以及二次函数的性质,得到关于a的不等式,解出即可.

解答 解:∵函数$y=\sqrt{{x^2}+2ax+1}$的定义域为R,
故△=4a2-4≤0,解得:-1≤a≤1,
故答案为:[-1,1].

点评 本题考查了求函数的定义域问题,考查二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若复数(x2-1)+(x+1)i为纯虚数,则实数x的值为(  )
A.1B.-1C.1或-1D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是(  )
A.8B.32C.16D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在平行六面体ABCD-A1B1C1D1中,已知$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow{A{A_1}}=\overrightarrow c$,则用向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$可表示向量$\overrightarrow{B{D_1}}$等于(  )
A.$\overrightarrow a+\overrightarrow b+\overrightarrow c$B.$\overrightarrow a-\overrightarrow b+\overrightarrow c$C.$\overrightarrow a+\overrightarrow b-\overrightarrow c$D.$-\overrightarrow a+\overrightarrow b+\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知α,β∈(0,$\frac{π}{2}$),且$\frac{sinα}{α}$<$\frac{sinβ}{β}$,则下列结论正确的是(  )
A.α<βB.α+β>$\frac{π}{2}$C.α>βD.α+β<$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=lnx,g(x)=x2
(Ⅰ)求函数h(x)=f(x)-x+1的最大值;
(Ⅱ)对于任意x1,x2∈(0,+∞),且x2<x1,是否存在实数m,使mg(x2)-mg(x1)>x1f(x1)-x2f(x2)恒成立,若存在求出m的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin1cos2tan3的值为(  )
A.负数B.正数C.0D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知n=${∫}_{0}^{6}$$\frac{1}{3}$xdx,则($\frac{\sqrt{x}}{3}$-$\frac{3}{\sqrt{x}}$)n的展开式中x2的系数为(  )
A.-$\frac{4}{27}$B.-$\frac{2}{27}$C.$\frac{2}{27}$D.$\frac{4}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知关于x的一元二次方程x2-2(a-2)-b2+16=0.
(1)若a、b是一枚骰子掷两次所得到的点数,求方程有两正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程没有实根的概率.

查看答案和解析>>

同步练习册答案