精英家教网 > 高中数学 > 题目详情
15.圆$ρ=\sqrt{2}(cosθ+sinθ)$的圆心的极坐标是(1,$\frac{π}{4}$).(ρ>0,θ∈[0,2π))

分析 由ρ2=x2+y2,x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程为${x}^{2}+{y}^{2}-\sqrt{2}x-\sqrt{2}y$=0,从而圆心的直角坐标为($\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$),由此能求出圆心的极坐标.

解答 解:∵圆$ρ=\sqrt{2}(cosθ+sinθ)$,(ρ>0,θ∈[0,2π))
∴${ρ}^{2}=\sqrt{2}ρcosθ+\sqrt{2}ρsinθ$,
∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ,
∴${x}^{2}+{y}^{2}=\sqrt{2}x+\sqrt{2}y$,即${x}^{2}+{y}^{2}-\sqrt{2}x-\sqrt{2}y$=0,
∴圆心的直角坐标为($\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$),
∴$ρ=\sqrt{(\frac{\sqrt{2}}{2})^{2}+(\frac{\sqrt{2}}{2})^{2}}$=1,$θ=\frac{π}{4}$,
∴圆心的极坐标为(1,$\frac{π}{4}$).
故答案为:(1,$\frac{π}{4}$).

点评 本题考查圆心的极坐标的求法,考查直角坐标方程、极坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.二次函数y=f(x)满足f(x+3)=f(3-x),x∈R且f(x)=0有两个实根x1,x2,则x1+x2=(  )
A.6B.-6C..3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数f(x)满足:y=f(x-1)的图象关于(1,0)点对称,且当x≥0时恒有f(x-$\frac{3}{2}$)=f(x+$\frac{1}{2}$),当x∈[0,2)时,f(x)=ex-1,则f(2017)+f(-2016)=(  )
A.1-eB.-1-eC.e-1D.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设A是单位圆O和x轴正半轴的交点,P,Q是圆O上两点,O为坐标原点,∠AOP=$\frac{π}{6}$,∠AOQ=α,α∈[0,$\frac{π}{2}$].
(1)若Q($\frac{3}{5}$,$\frac{4}{5}$),求cos(α-$\frac{π}{6}$)的值;
(2)设函数f(α)=sinα•($\overrightarrow{OP}$•$\overrightarrow{OQ}$),求f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{1-x,x≤0}\\{{a}^{x},x>0}\end{array}\right.$若4f(1)=f(-1),则实数a的值等于(  )
A.1B.$\frac{1}{2}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在空间直角坐标系o-xyz中,A(2,0,0),B(1,0,1)为直线l1上的点,M(1,0,0),N(1,1,1)为直线l2上的两点,则异面直线l1与l2所成角的大小是(  )
A.75°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.抛物线y2=2px(p>0)的焦点为F,过点F的直线l与抛物线交于A,B两点,O为坐标原点,$\overrightarrow{OA}$$•\overrightarrow{OB}$=-12求抛物线的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若△ABC的边BC上存在一点M(异于B,C),将△ABM沿AM翻折后使得AB⊥CM,则内角A,B,C必满足(  )
A.B≥90°B.B<90°C.C<90°D.A<90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下面四个函数:①y=cos|2x|;②y=|sinx|;③$y=cos(2x+\frac{π}{4})$;④$y=tan(2x-\frac{π}{3})$.其中最小正周期为π的有(  )
A.①②③B.②③④C.②③D.①④

查看答案和解析>>

同步练习册答案