精英家教网 > 高中数学 > 题目详情
7.抛物线y2=2px(p>0)的焦点为F,过点F的直线l与抛物线交于A,B两点,O为坐标原点,$\overrightarrow{OA}$$•\overrightarrow{OB}$=-12求抛物线的解析式.

分析 求出抛物线的焦点,分情况讨论:当直线l垂直于x轴时,$\overrightarrow{OA}$$•\overrightarrow{OB}$的值;当直线l不垂直于x轴时,再设出直线方程,把直线与抛物线方程联立,得到A,B两点的坐标和斜率之间的关系,再代入$\overrightarrow{OA}$$•\overrightarrow{OB}$,计算即可得到结论,再由条件解方程可得p的值,进而得到所求抛物线的方程.

解答 解:抛物线y2=2px(p>0)的焦点为F($\frac{p}{2}$,0),
若直线l垂直于x轴,可设A($\frac{p}{2}$,p),B($\frac{p}{2}$,-p).
$\overrightarrow{OA}$•$\overrightarrow{OB}$=($\frac{p}{2}$)2-p2=-$\frac{3}{4}$p2
若直线l不垂直于轴,设其方程为y=k(x-$\frac{p}{2}$),
A(x1,y1),B(x2,y2).
由 $\left\{\begin{array}{l}{y=k(x-\frac{p}{2})}\\{{y}^{2}=2px}\end{array}\right.$⇒k2x2-p(2+k2)x+$\frac{{p}^{2}}{4}$•k2=0,
∴x1+x2=$\frac{2+{k}^{2}}{{k}^{2}}$•p,x1•x2=$\frac{{p}^{2}}{4}$.
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=x1x2+k2(x1-$\frac{p}{2}$)(x2-$\frac{p}{2}$)
=(1+k2)x1x2-$\frac{p}{2}$k2(x1+x2)+$\frac{{p}^{2}{k}^{2}}{4}$
=(1+k2)$\frac{{p}^{2}}{4}$-$\frac{p}{2}$k2•$\frac{2+{k}^{2}}{{k}^{2}}$•p+$\frac{{p}^{2}{k}^{2}}{4}$=-$\frac{3}{4}$p2
综上,$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{4}$p2
由题意可得-$\frac{3}{4}$p2=-12,
解得p=4,
则抛物线的方程为y2=8x.

点评 本题考查直线和抛物线的位置关系,一元二次方程根与系数的关系,两个向量的数量积公式的应用,求出x1•x2 和y1•y2的值,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知实数1<a<2,3<b<4,则$\frac{a}{b}$的取值范围是$(\frac{1}{4},\frac{2}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,过点F的直线分别交两条渐近线于A,B两点,OA⊥AB,若2|AB|=|OA|+|OB|,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.2C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.圆$ρ=\sqrt{2}(cosθ+sinθ)$的圆心的极坐标是(1,$\frac{π}{4}$).(ρ>0,θ∈[0,2π))

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为e=$\sqrt{3}$,点为C上的一个动点,A1A2分别为的左、右顶点,则直线A1P与直线A2P的斜率之积为(  )
A.-2B.2C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a>0,b>0,
(1)求证:$\frac{{a}^{2}}{b}$$+\frac{{b}^{2}}{a}$≥a+b
(2)求证:$\frac{1}{a}$$+\frac{4}{b}$$≥\frac{9}{a+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知正数a,b满足2a+b≤ab,求证:a+2b≥9.
(2)求证:1,$\sqrt{2}$,3不可能是一个等差数列中的三项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等差数列{an}中,2a2+a3+a5=20且前10项的和为S10=100,则数列{an}的公差d=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.向量$\overrightarrow a=(3,4)$在向量$\overrightarrow b=(7,-24)$上的投影是-3.

查看答案和解析>>

同步练习册答案