精英家教网 > 高中数学 > 题目详情
17.向量$\overrightarrow a=(3,4)$在向量$\overrightarrow b=(7,-24)$上的投影是-3.

分析 计算$\overrightarrow{a}•\overrightarrow{b}$和|$\overrightarrow{b}$|,代入投影公式计算.

解答 解:|$\overrightarrow{b}$|=$\sqrt{{7}^{2}+2{4}^{2}}$=25,
$\overrightarrow{a}•\overrightarrow{b}$=21-96=-75,
∴$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为:$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$=-3.
故答案为:-3.

点评 本题考查来了平面向量的坐标运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.抛物线y2=2px(p>0)的焦点为F,过点F的直线l与抛物线交于A,B两点,O为坐标原点,$\overrightarrow{OA}$$•\overrightarrow{OB}$=-12求抛物线的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$|{\vec a}|=4$,$|{\vec b}|=3$,且$(2\vec a-3\vec b)(2\vec a+\vec b)=61$,则$\vec a$在$\vec b$方向上的投影为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下面四个函数:①y=cos|2x|;②y=|sinx|;③$y=cos(2x+\frac{π}{4})$;④$y=tan(2x-\frac{π}{3})$.其中最小正周期为π的有(  )
A.①②③B.②③④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$sin(\frac{π}{3}-α)sin(\frac{π}{6}+α)=-\frac{1}{4},α∈(\frac{π}{3},\frac{π}{2})$.
( I)求sin2α的值;
( II)求$tanα-\frac{1}{tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知{an}的各项为正数,其前n项和Sn满足${S_n}={(\frac{{{a_n}+1}}{2})^2}$,设bn=10-an(n∈N*).
(Ⅰ)求证:数列{an}是等差数列,并求{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Tn,求Tn的最大值;
(Ⅲ)求数列{|bn|}的前n项和Hn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设A=$\{x|\frac{1}{x-1}≥1\},B=\{y|y={2^x},x∈(-2,2)\}$,集合A∩B=(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=-1+\sqrt{2}sinα}\end{array}}\right.$(α为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$\sqrt{2}ρsin(θ+\frac{π}{4})=1$.
( I)写出曲线C的极坐标方程和直线l的直角坐标方程;
( II)若直线l与曲线C交于A、B两点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知下列命题:
①若直线与平面有两个公共点,则直线在平面内;
②若直线l上有无数个点不在平面α内,则l∥α;
③若直线l与平面α相交,则l与平面α内的任意直线都是异面直线;
④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;
⑤若直线l与平面α平行,则l与平面α内的直线平行或异面;
⑥若平面α∥平面β,直线a?α,直线b?β,则直线a∥b.
上述命题正确的是①⑤.(请把所有正确命题的序号填在横线上)

查看答案和解析>>

同步练习册答案