精英家教网 > 高中数学 > 题目详情
12.已知$sin(\frac{π}{3}-α)sin(\frac{π}{6}+α)=-\frac{1}{4},α∈(\frac{π}{3},\frac{π}{2})$.
( I)求sin2α的值;
( II)求$tanα-\frac{1}{tanα}$的值.

分析 ( I)利用同角三角函数的基本关系、诱导公式求sin2α的值.
( II)利用同角三角函数的基本关系、二倍角公式求求得 $tanα-\frac{1}{tanα}$的值.

解答 解:( I)$sin(\frac{π}{3}-α)sin(\frac{π}{6}+α)=cos(\frac{π}{6}+α)sin(\frac{π}{6}+α)=\frac{1}{2}sin(2α+\frac{π}{3})=-\frac{1}{4}$,
则$sin(2α+\frac{π}{3})=-\frac{1}{2}$,又∵$α∈[\frac{π}{3},\frac{π}{2}]$,∴$2α+\frac{π}{3}∈[π,\frac{4π}{3}]$,∴$cos(2α+\frac{π}{3})=-\frac{{\sqrt{3}}}{2}$.
所以$sin2α=sin[(2α+\frac{π}{3})-\frac{π}{3}]=sin(2α+\frac{π}{3})cos\frac{π}{3}-cos(2α+\frac{π}{3})sin\frac{π}{3}=-\frac{1}{2}×\frac{1}{2}+\frac{{\sqrt{3}}}{2}×\frac{{\sqrt{3}}}{2}=\frac{1}{2}$.
( II)由( I)知$sin2α=\frac{1}{2}$,又$2α∈(\frac{2π}{3},π)$,所以$cos2α=-\frac{{\sqrt{3}}}{2}$,
所以$tanα-\frac{1}{tanα}=\frac{sinα}{cosα}-\frac{cosα}{sinα}=\frac{{{{sin}^2}α-{{cos}^2}α}}{sinαcosα}=\frac{-2cos2α}{sin2α}=\frac{{\sqrt{3}}}{{\frac{1}{2}}}=2\sqrt{3}$.

点评 本题主要考查同角三角函数的基本关系、诱导公式、二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为e=$\sqrt{3}$,点为C上的一个动点,A1A2分别为的左、右顶点,则直线A1P与直线A2P的斜率之积为(  )
A.-2B.2C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题正确的是(  )
A.$\overrightarrow{a}$与$\overrightarrow{b}$共线,$\overrightarrow{b}$与$\overrightarrow{c}$共线,则$\overrightarrow{a}$与$\overrightarrow{c}$也共线
B.单位向量都相等
C.向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,则$\overrightarrow{a}$与$\overrightarrow{b}$都是非零向量
D.共线向量一定在同一直线上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.大于3的正整数x满足$C_{18}^x=C_{18}^{3x-6}$,x=(  )
A.6B.4C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$α∈(-π,-\frac{π}{2}),tanα=\frac{3}{4}$,则$cos(\frac{3π}{2}-α)+2{sin^2}\frac{α}{2}$=(  )
A.$\frac{6}{5}$B.$\frac{12}{5}$C.1D.$-\frac{2}{5}$或$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.向量$\overrightarrow a=(3,4)$在向量$\overrightarrow b=(7,-24)$上的投影是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.学校器材室有10个篮球,其中6个好球,4个球轻微漏气,甲、乙二人依次不放回各拿取一个球,则甲、乙二人至少有一个拿到好球的概率是 (  )
A.$\frac{3}{5}$B.$\frac{1}{2}$C.$\frac{13}{15}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.海军某舰队在一未知海域向正西方向行驶(如图),在A处测得北侧一岛屿的顶端D的底部C在西偏北30°的方向上,行驶4千米到达B处后,测得该岛屿的顶端D的底部C在西偏北75°方向上,山顶D的仰角为30°,此岛屿露出海平面的部分CD的高度为(  )
A.$\frac{2\sqrt{6}}{3}$B.2$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图程序的输出结果为(  )
A.3,4B.7,11C.7,8D.7,7

查看答案和解析>>

同步练习册答案