精英家教网 > 高中数学 > 题目详情
1.海军某舰队在一未知海域向正西方向行驶(如图),在A处测得北侧一岛屿的顶端D的底部C在西偏北30°的方向上,行驶4千米到达B处后,测得该岛屿的顶端D的底部C在西偏北75°方向上,山顶D的仰角为30°,此岛屿露出海平面的部分CD的高度为(  )
A.$\frac{2\sqrt{6}}{3}$B.2$\sqrt{2}$C.$\sqrt{3}$D.2

分析 在△ABC中利用正弦定理计算BC,再在△BCD中计算CD.

解答 解:由题意得A=30°,∠ACB=75°-30°=45°,AB=4,
在△ABC中,由正弦定理得$\frac{AB}{sin∠ACB}=\frac{BC}{sinA}$,
∴BC=$\frac{AB•sinA}{sin∠ACB}$=$\frac{4•\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=2$\sqrt{2}$,
在Rt△BCD中,∵tan∠CBD=$\frac{CD}{BC}$,
∴CD=BC•tan∠CBD=2$\sqrt{2}•$$\frac{\sqrt{3}}{3}$=$\frac{\sqrt{6}}{3}$(千米).
故选:A.

点评 本题考查了正弦定理,解三角形的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.一袋中共有个大小相同的黑球5个和白球5个.
(1)若从袋中任意摸出2个球,求至少有1个白球的概率.
(2)现从中不放回地取球,每次取1个球,取2次,已知第1次取得白球,求第2次取得黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$sin(\frac{π}{3}-α)sin(\frac{π}{6}+α)=-\frac{1}{4},α∈(\frac{π}{3},\frac{π}{2})$.
( I)求sin2α的值;
( II)求$tanα-\frac{1}{tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设A=$\{x|\frac{1}{x-1}≥1\},B=\{y|y={2^x},x∈(-2,2)\}$,集合A∩B=(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=Asin(ωx+α)(A>0,ω>0,|α|<π),在同一周期内,当$x=\frac{π}{12}$时,f(x)取得最大值2;当$x=\frac{7π}{12}$时,f(x)取得最小值-2
(1)求函数f(x)的解析式;                      
(2)求函数f(x)的单调减区间(3)若$x∈[{-\frac{π}{3},\frac{π}{6}}]$时,函数h(x)=2f(x)+1-m有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=-1+\sqrt{2}sinα}\end{array}}\right.$(α为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$\sqrt{2}ρsin(θ+\frac{π}{4})=1$.
( I)写出曲线C的极坐标方程和直线l的直角坐标方程;
( II)若直线l与曲线C交于A、B两点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$f(x)=\sqrt{3}sin({2x-\frac{π}{6}})+1$的最小值和最小正周期分别为(  )
A.$-\sqrt{3}-1,π$B.$-\sqrt{3}+1,π$C.$-\sqrt{3},π$D.$-\sqrt{3}-1,2π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=lnx的图象与直线$y=\frac{1}{2}x+a$相切,则a=ln2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=cosπx与g(x)=|log2|x-1||的图象所有交点的横坐标之和为(  )
A.0B.2C.4D.6

查看答案和解析>>

同步练习册答案