分析 设切点为P(x0,y0),求出函数的导数,可得$\frac{1}{{x}_{0}}$=$\frac{1}{2}$,求得x0,从而可得y0,代入直线y=$\frac{1}{2}$x+a,可求得a的值.
解答 解:设切点为P(x0,y0),
由f(x)=lnx的导数为f′(x)=$\frac{1}{x}$,
由题意可得$\frac{1}{{x}_{0}}$=$\frac{1}{2}$,得:x0=2,
∴y0=lnx0=ln2,
∴P(2,ln2)
又P(2,ln2)在直线y=$\frac{1}{2}$x+a上,
∴1+a=ln2,
∴a=ln2-1.
故答案为:ln2-1.
点评 本题考查利用导数研究曲线上某点切线方程,求得切点坐标是关键,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{6}}{3}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 垂直 | B. | 平行 | C. | 相交但不垂直 | D. | 重合 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“p∨q为真”是命题“p∧q为真”的充分不必要条件 | |
| B. | 命题“在△ABC中,A>30°,则sinA>$\frac{1}{2}$”的逆否命题为真命题 | |
| C. | 若非零向量$\overrightarrow{a}$、$\overrightarrow b$满足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,则$\overrightarrow a$与$\overrightarrow b$共线 | |
| D. | 设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的充分必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com