| A. | -2 | B. | 2 | C. | 3 | D. | $\sqrt{3}$ |
分析 由离心率公式和a,b,c的关系,可得a,b的关系,设P(m,n),代入双曲线的方程,设A1(-a,0),A2(a,0),运用直线的斜率公式,化简整理即可得到所求积.
解答 解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为e=$\sqrt{3}$,
可得$\frac{c}{a}$=$\sqrt{3}$,即c=$\sqrt{3}$a,
b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{2}$a,
设P(m,n),可得$\frac{{m}^{2}}{{a}^{2}}$-$\frac{{n}^{2}}{{b}^{2}}$=1,
即有n2=b2•$\frac{{m}^{2}-{a}^{2}}{{a}^{2}}$,
A1(-a,0),A2(a,0),
直线A1P与直线A2P的斜率之积为$\frac{n}{m+a}$•$\frac{n}{m-a}$=$\frac{{n}^{2}}{{m}^{2}-{a}^{2}}$
=$\frac{{b}^{2}}{{a}^{2}}$=2,
故选:B.
点评 本题考查直线的斜率之积的求法,注意运用双曲线的离心率公式和基本量a,b,c的关系,点满足双曲线的方程,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {3} | B. | {2,3} | C. | {0,2,3} | D. | {-2,0,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x-y=0 | B. | x-2y=0 | C. | 4x-y=0 | D. | x-4y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com