| A. | $\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{4}$ |
分析 如图所示,四边形OABC为平行四边形,∠OAB=30°,直线OC的方程为:y=$\frac{\sqrt{3}}{3}$x,联立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,解得:xC.同理联立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}(x+a)}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,解得xB.根据|OA|=|CB|=a,即xC-xB=a化简即可得出.
解答
解:如图所示,四边形OABC为平行四边形,∠OAB=30°,
∴直线OC的方程为:y=$\frac{\sqrt{3}}{3}$x,
联立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,解得:xC=$\frac{\sqrt{3}ab}{\sqrt{{a}^{2}+3{b}^{2}}}$.
同理联立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}(x+a)}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,化为:(a2+3b2)x2+2a3x+a4-3a2b2=0.
解得xB=a$-\frac{2{a}^{3}}{{a}^{2}+3{b}^{2}}$=$\frac{3a{b}^{2}-{a}^{3}}{{a}^{2}+3{b}^{2}}$.
∵|OA|=|CB|=a,
∴$\frac{\sqrt{3}ab}{\sqrt{{a}^{2}+3{b}^{2}}}$-$\frac{3a{b}^{2}-{a}^{3}}{{a}^{2}+3{b}^{2}}$=a.
化为:a=3b.
∴椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{2\sqrt{2}}{3}$.
故选:A.
点评 本题考查了椭圆的标准方程及其性质、平行四边形的性质,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com