精英家教网 > 高中数学 > 题目详情
20.在空间直角坐标系o-xyz中,A(2,0,0),B(1,0,1)为直线l1上的点,M(1,0,0),N(1,1,1)为直线l2上的两点,则异面直线l1与l2所成角的大小是(  )
A.75°B.60°C.45°D.30°

分析 求出$\overrightarrow{AB}$=(-1,0,1),$\overrightarrow{MN}$=(0,1,1),设异面直线l1与l2所成角为θ,则cosθ=$\frac{|\overrightarrow{AB}•\overrightarrow{MN}|}{|\overrightarrow{AB}|•|\overrightarrow{MN}|}$,由此能求出异面直线l1与l2所成角的大小.

解答 解:∵空间直角坐标系o-xyz中,A(2,0,0),B(1,0,1)为直线l1上的点,
M(1,0,0),N(1,1,1)为直线l2上的两点,
∴$\overrightarrow{AB}$=(-1,0,1),$\overrightarrow{MN}$=(0,1,1),
设异面直线l1与l2所成角为θ,
则cosθ=$\frac{|\overrightarrow{AB}•\overrightarrow{MN}|}{|\overrightarrow{AB}|•|\overrightarrow{MN}|}$=$\frac{1}{\sqrt{2}×\sqrt{2}}=\frac{1}{2}$,
∴θ=60°.
∴异面直线l1与l2所成角的大小为60°.
故选:B.

点评 本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=2sin(2x-$\frac{π}{6}$)-1,下面结论中错误的是(  )
A.函数f(x)的最小正周期为π
B.函数f(x)图象关于直线x=$\frac{π}{3}$对称
C.函数f(x)的图象可由g(x)=2sin2x-1的图象向右平移$\frac{π}{6}$个单位得到
D.函数f(x)在区间$[0,\frac{π}{4}]$上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$.
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)判定f(x)的奇偶性并证明;
(Ⅲ)用函数单调性定义证明:f(x)在(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知平面内两点A(-4,1),B(-3,-1),过定点M(-2,2)的直线与线段AB恒有公共点,则直线斜率的取值范围是[$\frac{1}{2}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.圆$ρ=\sqrt{2}(cosθ+sinθ)$的圆心的极坐标是(1,$\frac{π}{4}$).(ρ>0,θ∈[0,2π))

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.椭圆C:$\frac{{x}^{2}}{9}$$+\frac{{y}^{2}}{16}$=1的两个焦点分别为F1,F2,过F1的直线l交C于A,B两点,若|AF2|+|BF2|=10,则|AB|的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a>0,b>0,
(1)求证:$\frac{{a}^{2}}{b}$$+\frac{{b}^{2}}{a}$≥a+b
(2)求证:$\frac{1}{a}$$+\frac{4}{b}$$≥\frac{9}{a+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某校有初中学生900人,高中学生1200人,教师120人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本进行调查,如果从高中生中抽取了80人,那么n的值是(  )
A.120B.148C.140D.136

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A,B,C是单位圆O上圆周的三等分点,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$
( I)求证:($\overrightarrow{a}-\overrightarrow{b}$)⊥$\overrightarrow{c}$
( II)若|t$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$|=1,求实数t的值.

查看答案和解析>>

同步练习册答案