精英家教网 > 高中数学 > 题目详情
16.方程组$\left\{\begin{array}{l}{x+y=3}\\{x-2y=-3+a}\end{array}\right.$的解满足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\end{array}\right.$,求a的取值范围.

分析 解方程组可得关于a的不等式组,解不等式组可得.

解答 解:解方程组$\left\{\begin{array}{l}{x+y=3}\\{x-2y=-3+a}\end{array}\right.$可得$\left\{\begin{array}{l}{x=1+\frac{a}{3}}\\{y=2-\frac{a}{3}}\end{array}\right.$,
∵$\left\{\begin{array}{l}{x≥0}\\{y≥0}\end{array}\right.$,∴$\left\{\begin{array}{l}{1+\frac{a}{3}≥0}\\{2-\frac{a}{3}≥0}\end{array}\right.$,解得-3≤a≤6.

点评 本题考查不等式的解法,涉及方程组的解集,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知全集U={1,2,3,4,5},集合A={1,3,5},B={3,4,5},则集合∁U(A∪B)={2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义在R上的奇函数f(x)满足f(x)=f(x+3),f(2014)=2,则f(-1)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=logax(a>0,a≠1)满足f($\frac{3}{a}$)>f($\frac{5}{a}$),则f(1-$\frac{1}{x}$)>1的解集是($1,\frac{1}{1-a}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{\frac{a+1}{x},x>1}\\{(-2a-1)x+1,x≤1}\end{array}\right.$是R上的单调递减函数,则实数a的取值范围是(-$\frac{1}{2}$,$-\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有下列四个命题:
①“若x+y≠2,则x≠1或y≠1”的逆命题;
②“若x2+3x-6≥0,则x>2”的否命题;
③“若m≤1,则x2-2x+m=0有实根”的逆否命题;
④“m=-2”是“直线(m+2)x+my+1=0与(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件.
其中真命题的是②③(填上你认为正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=x4-4x2-6,x∈(-1,$\sqrt{3}$)的值域为[-10,-6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知2x=log23,则$\frac{{2}^{3x}{-2}^{-3x}}{{2}^{x}{-2}^{-x}}$=$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)满足2f(x)+f($\frac{1}{x}$)=3x,求f(2)=$\frac{7}{2}$.

查看答案和解析>>

同步练习册答案