精英家教网 > 高中数学 > 题目详情
2.若四面体的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,给出下列结论:
①四面体每组对棱相互垂直;
②四面体每个面的面积相等;
③连接四面体每组对棱中点的连线相交于一点;
④从四面体每个顶点出发的三条棱两两夹角之和大于90°而小于180°
其中正确结论的序号是②③.(写出所有正确结论的序号)

分析 由对棱相等可知四面体为长方体的面对角线组成的三棱锥,借助长方体的性质判断各结论是否正确.

解答 解:由题意可知四面体ABCD为长方体的面对角线组成的三棱锥,
故只有当四面体棱长相等时,四面体的对棱垂直,故①错误;
由四面体的对棱相等可知四面体的各个面全等,故②正确;
由长方体的性质可知四面体的对棱中点连线必经过长方体的中心,故③正确;
当四面体的棱长相等时,过任意一个定点的两条棱的夹角均为60°,故两两夹角之和为180°,故④错误;
故答案为:②③.

点评 本题考查了棱锥的结构特征,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在平行四边形ABCD中,E,F分别是BC,DC上的点,且满足$\overrightarrow{BE}$=$\overrightarrow{EC}$,$\overrightarrow{DF}$=2$\overrightarrow{FC}$,记$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,试以$\overrightarrow a,\overrightarrow b$为平面向量的一组基底.利用向量的有关知识解决下列问题;
(Ⅰ)用$\overrightarrow a,\overrightarrow b$来表示向量$\overrightarrow{DE}与\overrightarrow{BF}$;
(Ⅱ)若|AB|=3,|AD|=2,且|BF|=$\sqrt{3}$,求|$\overrightarrow{DE}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义函数max{f(x),g(x)}=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,则max{sinx,cosx}的最小值为-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设m∈N*,且m<25,则(20-m)(21-m)…(26-m)等于(  )
A.$A_{26-m}^7$B.$C_{26-m}^7$C.$A_{20-m}^7$D.$A_{26-m}^6$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设复数z满足$\frac{1+z}{1+i}$=2-i,则|$\frac{1}{z}$|=(  )
A.$\sqrt{5}$B.$\frac{1}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且a=2,$cosC=-\frac{1}{4}$.
(Ⅰ)如果b=3,求c的值;
(Ⅱ)如果$c=2\sqrt{6}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某兴趣小组有9名学生.若从9名学生中选取3人,则选取的3人中恰好有一个女生的概率是$\frac{15}{28}$.
(1)该小组中男女学生各多少人?
(2)9个学生站成一列队,现要求女生保持相对顺序不变(即女生 前后顺序保持不变)重新站队,问有多少种重新站队的方法?(要求用数字作答)
(3)9名学生站成一列,要求男生必须两两站在一起,有多少种站队的方法?(要求用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z=1-$\frac{1}{i}$,则$\overline{z}$=(  )
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线过点$(3,\sqrt{15})$,渐进线方程为$y=±\sqrt{3}x$,圆C经过双曲线的一个顶点和一个焦点,且圆心在双曲线上,则圆心到该双曲线的中心的距离为(  )
A.3B.$\sqrt{5}$C.$2\sqrt{6}$D.$\sqrt{15}$

查看答案和解析>>

同步练习册答案