精英家教网 > 高中数学 > 题目详情
△ABC中,角A,B,C所对应的边分别为a,b,c,若
a-c
b-c
=
sinB
sinA+sinC

(I)求角A的大小;
(II)若f(x)=2cos2(x+A)+cos(2x-2A),求y=f(x)的最小正周期与单调递增区间.
分析:(I)由
a-c
b-c
=
sinB
sinA+sinC
,得
a-c
b-c
=
b
a+c
,即a2=b2+c2-bc,由余弦定理,得 cosA=
1
2
,可得A的值.
(II)利用二倍角公式化简f(x)的解析式为1-cos2x,从而求出周期,求出cos2x的单调减区间,即为函数f(x)的单调递增区间.
解答:解::(I)由
a-c
b-c
=
sinB
sinA+sinC
,得
a-c
b-c
=
b
a+c
,即a2=b2+c2-bc,由余弦定理,得 cosA=
1
2

又角A是△ABC的一个内角,∴A=
π
3

(II)∵f(x)=2cos2(x+A)+cos(2x-2A)=1+cos(2x+2A)+cos(2x-2A)=1-cos2x,
故函数的最小正周期为
2
=π.
由2kπ≤2x≤2kπ+π,k∈z,可得 kπ≤x≤kπ+
π
2
,k∈z,故单调增区间为[kπ,kπ+
π
2
],k∈z.
点评:本题考查正弦定理、余弦定理的应用,余弦函数的单调性,求出角A的值,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•丰台区一模)在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知函数f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函数f(x)的最小正周期及在区间[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面积S△ABC=3,求边长a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)在△ABC中,角A,B,C的对边分别为a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若A=
π4
,a=2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A、B、C所对的边长分别为a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大小;
(2)若△ABC面积为
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步练习册答案