精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲线y=g(x)与y=g(x)在它们的交点(1,c)处具有公共切线,求a,b,c的值;
(2)当a2+b=0时,求函数f(x)+g(x)在区间(-∞,-1]上的最大值.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(1)根据曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,故可求a、b的值;
(2)根据a2+b=0,构建函数,求导函数,利用导数的正负,可确定函数的单调区间,进而分类讨论,确定函数在区间(-∞,-1]上的最大值.
解答: 解:(1)f(x)=ax2+1(a>0),则f′(x)=2ax,k1=2a,
g(x)=x3+bx,则g′(x)=3x2+b,k2=3+b,
由(1,c)为公共切点,可得:2a=3+b  ①
又f(1)=a+1=c,g(1)=1+b=c,
∴a+1=1+b,即a=b,代入①式可得:a=3,b=3.c=4.
(2)由a2+b=0得b=-a2,设h(x)=f(x)+g(x)=ax2+1+x3-a2x.
则h′(x)=3x2+2ax-a2=(x+a)(3x-a),令h′(x)=0,解得:x=-a<0或x=
a
3
>0,
 x (-∞,-a)-a (-a,0)
 h′(x)+ -
  h(x) 单调递增  极大值 单调递减
∴原函数在(-∞,-a))单调递增,在(-a,0)单调递减,
①若-1≤-a,即0<a≤1时,此时函数在区间(-∞,-1]单调递增,最大值为h(-1)=a2+a;
②若-1>-a,即a>时,最大值为最大值为h(-a)=a3+1
综上所述:当a∈(0,1]时,最大值为h(-1)=a2+a;
当a∈(1,+∞)时,最大值为h(-a)=a3+1.
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,解题的关键是正确求出导函数.综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若不等式组
x2-4x≤0
0≤y≤2
x-y≥0
表示的平面区域为M,y≥x2表示的平面区域为N,现随机向M内抛掷一颗豆粒,则该豆粒落在区域N内的概率为(  )
A、
1
36
B、
35
36
C、
1
15
D、
14
15

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,且(2a+c)cosB=-bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2
3
,a+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱形,∠ABC=
π
3
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(1)证明:直线MN∥平面OCD;
(2)求异面直线AB与MD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的底面是正三角形,点M、N分别是A1C1和A1B1的中点,AA1=AB=BM=2,∠A1AB=60°.
(Ⅰ)求证:BN⊥平面A1B1C1
(Ⅱ)求二面角A1-AB-M的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足S1=-1,Sn+1+2Sn=-1(n∈N*),数列{bn}的通项公式为bn=3n-4(n∈N*
(1)求数列{an}的通项公式;
(2)是否存在圆心在x轴上的圆C及互不相等的正整数n、m、k,使得三点An(bn,an),Am(bm,am),Ak(bk,ak)落在圆C上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

先解答(1),再根据结构类比解答(2)
(1)已知a,b为实数,且|a|<1,|b|<1,求证:ab+1>a+b.
(2)已知a,b,c均为实数,且|a|<1,|b|<1,|c|<1求证:abc+2>a+b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an},若前n项和为Sn,且满足2Sn=an2+an,若数列{
1
an
2}的前n项和为Tn,求证:Tn
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:1.2x=6.

查看答案和解析>>

同步练习册答案