精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,已知sin(B+C)=2sinB,b=
5
,c=3.
(1)求a的长;
(2)求△ABC的面积.
考点:正弦定理,余弦定理
专题:解三角形
分析:(1)已知等式左边利用诱导公式化简,变形后利用正弦定理化简得到a=2b,求出a的值即可;
(2)利用余弦定理表示出cosB,将a,b,c的值代入求出cosB的值,进而求出sinB的值,再由a与c的值,利用三角形面积公式即可求出三角形ABC面积.
解答: 解:(1)∵sin(B+C)=2sinB,B+C=π-A,
∴sinA=2sinB,
由正弦定理化简得:a=2b,
则a=2b=2
5

(2)∵a=2
5
,b=
5
,c=3,
∴cosB=
a2+c2-b2
2ac
=
20+9-5
12
5
=
2
5
5

∴sinB=
1-cos2B
=
5
5

则S△ABC=
1
2
acsinB=
1
2
×2
5
×3×
5
5
=3.
点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F1(-3,0),过点F1作一条直线l交椭圆于A,B两点,点A关于坐标原点O的对称点为A1,两直线AB,A1B的斜率之积为-
16
25

(1)求椭圆C的方程;
(2)已知D(m,0)为F1右侧的一点,连AD,BD分别交椭圆左准线于M,N两点,若以MN为直径的圆恰好过点F1,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+2sin(x+π)sin(x+
2
)+3cos2x
(Ⅰ)求函数的单调减区间:
(Ⅱ)若方程f(x)=a+2,x∈[-
π
4
π
4
]有两解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-(a2-a)lnx-x(a≤
1
2
).
(1)若函数f(x)在2处取得极值,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性;
(3)设g(x)=a2lnx2-x,若f(x)>g(x)对?x>1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(4-2a)x+a2+1.
(1)若函数f(x)在区间[1,+∞)上单调递增,求实数a的取值范围;
(2)是否存在实数a∈[-8,0],使得函数f(x)在区间[-4,0]上的最小值为7?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天

(Ⅰ)求此人到达当日空气质量优良的概率;
(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望
(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)过点P(1,
2
2
),离心率e=
2
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)过点M(0,2)的直线l与椭圆E相交于A,B两点.
①当直线OA,OB的斜率之和为
4
3
时(其中O为坐标原点),求直线l的斜率k;
②求
MA
MB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)(ω>0),f(x)=
m
n
且y=f(x)图象上一个最高点的坐标为(
π
12
,2),与之相邻的一个最低点的坐标为(
12
,-2)
(1)求y=f(x)的解析式
(2)求y=f(x)的递增区间
(3)若x∈[0,
π
2
]时,求y=f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知算法程序如下:

若输入变量n的值为3,则输出变量S的值为
 
;若输出变量S的值为30,则变量n的值为
 

查看答案和解析>>

同步练习册答案