精英家教网 > 高中数学 > 题目详情
(2012•怀化二模)已知a+b+c=1,m=a2+b2+c2,则m的最小值为
1
3
1
3
分析:对于“积和结构”或“平方和结构”,通常构造利用柯西不等式求解即可.
解答:解:由柯西不等式得,(a2+b2+c2)(1+1+1)≥(a+b+c)2
当且仅当a=b=c时,取等号
∵a+b+c=1,m=a2+b2+c2
∴3m≥1
∴m
1
3

故答案为:
1
3
点评:柯西不等式的特点:一边是平方和的积,而另一边为积的和的平方,因此,当欲证不等式的一边视为“积和结构”或“平方和结构”,再结合不等式另一边的结构特点去尝试构造.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•怀化二模)已知向量
a
b
的夹角为120°,且|
a
|=2,|
b
|=5,则(2
a
-
b
)•
a
=
13
13

?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀化二模)已知实数x,y满足
|x|
5
+
|y|
3
≤1
,则z=2x+y的最小值是
-10
-10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀化二模)已知函数f(x)是R上的偶函数,且f(4-x)=f(x),当x∈[0,2]时,f(x)=x2+2x,则f(2011)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀化二模)已知函数?(x)=
a
x
,a为常数,且a>0
(1)若f(x)=ln(x-1)+?(x),且a=6,求函数f(x)的单调区间;
(2)若g(x)=|ln(x-1)|+?(x),且对任意x1,x2∈(1,3],x1≠x2,都有
g(x2)-g(x1)
x2-x1
<0
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀化二模)已知集合M={x∈R|(x-1)(x-2)>0}和N={x∈R|x2+x<0}则P:x∈M是q:x∈N的(  )

查看答案和解析>>

同步练习册答案