精英家教网 > 高中数学 > 题目详情
)如图所示,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯 

形,∠BAD=∠FAB=90°,BCAD,BEFA,G、H分别为FA、FD的中点.
(1)证明:四边形BCHG是平行四边形;
(2)C、D、F、E四点是否共面?为什么?
(3)设AB=BE,证明:平面ADE⊥平面CDE.
证明略
方法一  (1) 由题设知,FG=GA,


FH=HD,所以GHAD.
又BCAD,故GHBC.
所以四边形BCHG是平行四边形.
(2)  C、D、F、E四点共面.
理由如下:
由BEAF,G是FA的中点知,
BE GF,所以EF∥BG.
由(1)知BG∥CH,所以EF∥CH,故EC、FH共面.
又点D在直线FH上,所以C、D、F、E四点共面.
(3)如图,连接EG,由AB=BE,BEAG及∠BAG=90°知ABEG是正方形,故BG⊥EA.
由题设知,FA、AD、AB两两垂直,故AD⊥平面FABE,
因此EA是ED在平面FABE内的射影,根据三垂线定理,BG⊥ED.
又ED∩EA=E,所以BG⊥平面ADE.
由(1)知,CH∥BG,所以CH⊥平面ADE.
由(2)知CH平面CDE,得平面ADE⊥平面CDE.
方法二 由题设知,FA、AB、AD两两互相垂直.
如图,以A为坐标原点,射线AB为x轴正方向,以射线AD为y轴正方向,
以射线AF为z轴正方向,建立直角坐标系A—xyz.
(1) 设AB=a,BC=b,BE=c,则由题设得
A(0,0,0),B(a,0,0),C(a,b,0),D(0,2b,0),E(a,0,c),
G(0,0,c),H(0,b,c).
所以,=(0,b,0),=(0,b,0),于是=.
又点G不在直线BC上,
所以四边形BCHG是平行四边形.
(2) C、D、F、E四点共面.
理由如下:由题设知F(0,0,2c),
所以=(-a,0,c),=(-a,0,c),=.
又CEF,H∈FD,故C、D、F、E四点共面.
(3) 由AB=BE,得c=a,
所以=(-a,0,a),=(a,0,a).
=(0,2b,0),因此·=0,·=0.
即CH⊥AE,CH⊥AD.
又AD∩AE=A,所以CH⊥平面ADE.
故由CH平面CDFE,得平面ADE⊥平面CDE.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

下列命题中正确的是(  )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱
C.一个棱柱至少有五个面、六个顶点、九条棱
D.棱柱的侧棱长不都相等

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下图中不可能围成正方体的是(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

底面是平行四边形的四棱锥P-ABCD,点EPD上,且PEED=2∶1.
问:在棱PC上是否存在一点F,使BF∥面AEC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.

(1)求证:MN⊥AB,MN⊥CD;
(2)求MN的长;
(3)求异面直线AN与CM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方体ABCD—A1B1C1D1中,E、F分别是AB和AA1的中点.
求证:(1)E,C,D1,F四点共面;
(2)CE,D1F,DA三线共点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 如图所示,长方体ABCD-A1B1C1D1中,AB=a,BC=b,BB1=c,并且a>b>c>0.
求沿着长方体的表面自A到C的最短线路的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在底面边长为2 的正三棱锥V-ABC中,E是BC的中点,若的面积是,则侧棱VA与底面所成角的大小是__________________(结果用反三角函数值表示)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

XYZ是空间不同的直线或平面,对下面四种情形,使“XZYZXY”为真命题的是_________(填序号) 
XYZ是直线;②X、Y是直线,Z是平面;③Z是直线,XY是平面;④X、Y、Z是平面.

查看答案和解析>>

同步练习册答案