精英家教网 > 高中数学 > 题目详情
下图中不可能围成正方体的是(   )
D
可以想象着将展开图折叠,可知D选项不可能围成正方体.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,的中点,上一点,且
(1)求证: 平面
(2)求三棱锥的体积;
(3)试在上找一点,使得平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(I)求异面直线MN和CD1所成的角;
(II)证明:EF//平面B1CD1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



如图,在四棱锥中,四边形是正方形,平面上的一点,的中点
(Ⅰ)求证:
(Ⅱ)若,求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线a平行于平面α,且它们的距离为d,则到直线a与到平面α的距离都等于d的点的集合是……(    )
A.空集B.两条平行直线
C.一条直线D.一个平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如下图,在正三棱锥P-ABC中,D是侧棱PA的中点,O是底面ABC的中心,则下列四个结论中正确的是(     )
A.OA∥平面PBCB.OD⊥PAC.OD⊥ACD.PA=2OD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,ACBD交于点M,求证:C1OM三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

)如图所示,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯 

形,∠BAD=∠FAB=90°,BCAD,BEFA,G、H分别为FA、FD的中点.
(1)证明:四边形BCHG是平行四边形;
(2)C、D、F、E四点是否共面?为什么?
(3)设AB=BE,证明:平面ADE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

圆锥的母线长为2,轴截面是等边三角形,则轴截面的面积是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案