精英家教网 > 高中数学 > 题目详情
3.若点(2,1)在y=ax(a>0,且a≠l)关于y=x对称的图象上,则a=2.

分析 点(2,1)在y=ax(a>0,且a≠l)关于y=x对称的图象上,可得点(1,2)在y=ax(a>0,且a≠l)的图象上,即可得出.

解答 解:∵点(2,1)在y=ax(a>0,且a≠l)关于y=x对称的图象上,
∴点(1,2)在y=ax(a>0,且a≠l)的图象上,
∴2=a1,解得a=2.
故答案为:2.

点评 本题考查了互为反函数的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A、B、C对应的边长分别为a、b、c.已知acosB-$\frac{1}{2}$b=$\frac{{a}^{2}}{c}$-$\frac{bsinB}{sinC}$.
(1)求角A;
(2)若a=$\sqrt{3}$,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.sinα+2cosα的最大值是(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在长为6m的木棒AB上任取一点P,使点P到木棒两端点的距离都大于2m的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若x>-3,则函数$y=x+\frac{1}{x+3}$的最小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义域为R的函数f(x)满足:①f(x)+f(-x)=0(x∈R);②f(-3)=0;③[f(x1)-f(x2)](x1-x2)>0,(x1,x2∈R+,x1≠x2).则不等式x•f(x)<0的解集是(  )
A.{x|-3<x<0或x>3}B.{x|x<-3或0≤x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC的内角A,B,C所对的边分别为a,b,c,且c=$\sqrt{3}$asinC-ccosA.
(1)求A;
(2)若a=1,△ABC的面积为$\frac{\sqrt{3}}{4}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex+be-x,(b∈R),函数g(x)=2asinx,(a∈R).
(1)求函数f(x)的单调区间;
(2)若b=-1,f(x)>g(x),x∈(0,π),求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知g(x)为函数f(x)=2ax3-3ax2-12ax(a≠0)的导函数,则它们的图象可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案