精英家教网 > 高中数学 > 题目详情

如图,直线AB过圆心O,交于F(不与B重合),直线相切于C,交AB于E,且与AF垂直,垂足为G,连结AC.

求证:(1);(2).

(1)证明过程详见解析;(2)证明过程详见解析.

解析试题分析:本题主要考查以圆为背景考查角相等的证明及相似三角形等基础知识,考查学生的转化能力和推理论证能力.第一问,通过AB为直径,所以为直角,又因为GC切⊙O于C,所以,所以得证;第二问,利用EC与⊙O相切,得出,所以三角形相似得相似,利用相似三角形的性质,得出比例值,化简即可,得证.
试题解析::(1)连结,∵是直径,
,∴.
,∴.
                                   .5分
(2)连结,∵,  ∴.
,   ∴.
,∴.                        .10分

考点:1.圆的切线的性质;2.相似三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。

求:(1)⊙O的半径;
(2)s1n∠BAP的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,若△ABC为等腰三角形,△ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DB·CE.

(1)求证:△ADB∽△EAC;
(2)若∠BAC=40°,求∠DAE的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(拓展深化)如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10 cm,AP∶PB=1∶5,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,AB是⊙O的直径,弦AC=3 cm,BC=4 cm,CD⊥AB,垂足为D,求AD、BD和CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,以梯形ABCD的对角线AC及腰AD为邻边作平行四边形ACED,DC的延长线交BE于点F,求证:EF=BF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直直线OM,垂足为P.

(1)证明:OM·OPOA2
(2)N为线段AP上一点,直线NB垂直直线ON,且交圆OB点.过B点的切线交直线ONK.证明:∠OKM=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,是的中点,的中点,的延长线交.

(Ⅰ)求的值;
(Ⅱ)若面积为,四边形的面积为,求:的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆上三点,的角平分线,交圆,过作圆的切线交的 延长线于.

(Ⅰ)求证:
(Ⅱ)求证:.

查看答案和解析>>

同步练习册答案