【题目】已知函数
是定义在R上的偶函数,且当
时,
(
).
(1)当
时,求
的表达式:
(2)求
在区间
的最大值
的表达式;
(3)当
时,若关于x的方程
(a,
)恰有10个不同实数解,求a的取值范围.
【答案】(1)
;(2)
;(3)![]()
【解析】
(1)根据偶函数的特点,可知
,可得结果.
(2)采用分类讨论方法,
与
,去掉绝对值研究函数
在区间
上的单调性,可得结果.
(3)画出函数
图像,利用换元法
,得出
与
,可转化为
两个根为
,可得
,最后计算可得结果.
(1)令
,则![]()
由当
时,![]()
所以![]()
又函数
是定义在R上的偶函数,
即![]()
所以![]()
所以当
时,![]()
(2)当
时,![]()
如图
![]()
可知函数
的最大值在
或
处取得,
所以
,![]()
![]()
![]()
①若
,此时![]()
②若
,此时
;
当
时,
,对称轴为![]()
③若
,即
时,则
,
④若
,即
时,则![]()
综上,得![]()
(3)当
时,![]()
如图
![]()
令![]()
由
的图象可知,
当
时,方程
有两解;
当
时,方程
有四解;
当
时,方程
有六解;
当
时,方程
有三解;
当
时,方程
无解.
要使方程
(a,
)
恰有10个不同实数解,
则关于t的方程
的一个根为1,
另一个根
,设
,则有
![]()
则![]()
所以a的取值范围为
.
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A.命题“若
,则
”的逆否命题是“若
,则
”
B.“
”是“
”的充分不必要条件
C.若
为假命题,则
、
均为假命题
D.命题
:“
,使得
”,则非
:“
,
”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准:(单位:吨),用水量不超过
的部分按平价收费,超过
的部分按议价收费,为了了解全布市民用用水量分布情况,通过袖样,获得了100位居民某年的月用水量(单位:吨),将数据按照
……
分成9组,制成了如图所示的频率分布直方图
![]()
(1)求频率分布直方图中
的值;
(2)若该市政府看望使85%的居民每月的用水量不超过标准
(吨),估计
的值,并说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程是
,以极点为原点,以极轴为
轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线
的参数方程为
.
(1)写出直线
的普通方程与曲线
的直角坐标方程;
(2)设曲线
经过伸缩变换
得到曲线
,曲线
上任一点为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)
为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求
①顾客所获的奖励额为60元的概率
②顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
![]()
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
分组 | 频数 | 频率 |
| 2 | 0.04 |
| 8 | 0.16 |
| 10 | ________ |
| ________ | ________ |
| 14 | 0.28 |
合计 | ________ | 1.00 |
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在
和
的人中共抽取6人,再从6人中选2人,求2人分数都在
的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com