精英家教网 > 高中数学 > 题目详情
9.解方程cos(x+$\frac{π}{4}$)=$\frac{1}{2}$,x∈(0,2π),x=$\frac{π}{12}$或$\frac{17π}{12}$.

分析 由条件cos(x+$\frac{π}{4}$)=$\frac{1}{2}$以及x+$\frac{π}{4}$∈($\frac{π}{4}$,2π+$\frac{π}{4}$),求得x的值.

解答 解:∵cos(x+$\frac{π}{4}$)=$\frac{1}{2}$,x∈(0,2π),∴x+$\frac{π}{4}$∈($\frac{π}{4}$,2π+$\frac{π}{4}$),
∴x+$\frac{π}{4}$=$\frac{π}{3}$,或 x+$\frac{π}{4}$=$\frac{5π}{3}$,求得x=$\frac{π}{12}$,或x=$\frac{17π}{12}$,
故答案为:$\frac{π}{12}$或$\frac{17π}{12}$.

点评 本题主要考查余弦函数的图象特征,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.如图,在△ABC中,已知$∠BAC=\frac{π}{3}$,AB=2,AC=4,点D为边BC上一点,满足$\overrightarrow{AC}$+2$\overrightarrow{AB}$=3$\overrightarrow{AD}$,点E是AD上一点,满足$\overrightarrow{AE}$=2$\overrightarrow{ED}$,则BE=$\frac{2\sqrt{21}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,输出的结果是(  )
A.15B.21C.24D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.运行如图程序,若随机输人一个x值,则输出的结果不可能是(  )
A.-3B.0C.0.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点A的坐标为(2,-5),点B的坐标为(-1,4),且$\overrightarrow{AC}$=2$\overrightarrow{BC}$,则点C的坐标为(-4,13).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,则2f(x)-f($\sqrt{2}$x)=0;若对任意的x∈[a,a+1],不等式f(x+a)≥2f(x)恒成立,则实数a的取值范围是[$\frac{\sqrt{2}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等比数列{an}的前n项和Sn满足:S3=39,且2a2是3a1与a3的等差中项.
(I)求数列{an}的通项an
(Ⅱ)若数列{an}为递增数列,bn=$\frac{1}{lo{g}_{3}{a}_{n}•lo{g}_{3}{a}_{n+2}}$,Tn=b1+b2+…+bn,问是否存在正整数n使得Tn$>\frac{1}{2}$成立?若存在,求出n的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.曲线x2+y2+2$\sqrt{2}$x-2$\sqrt{2}$y=0关于点(-$\sqrt{2}$,$\sqrt{2}$)中心对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数在区间(0,+∞)上为增函数的是(  )
A.y=cosxB.y=2xC.y=2-x2D.y=${log}_{\frac{1}{3}}$x

查看答案和解析>>

同步练习册答案