精英家教网 > 高中数学 > 题目详情
19.下列函数在区间(0,+∞)上为增函数的是(  )
A.y=cosxB.y=2xC.y=2-x2D.y=${log}_{\frac{1}{3}}$x

分析 利用函数的图象与性质,分别判断选项中的函数在(0,+∞)上是否单调递增即可.

解答 解:对于A,y=cosx是周期为2π的函数,在(0,+∞)上不是单调函数,故A错误;
对于B,y=2x是定义域R上的单调增函数,所以在(0,+∞)上是增函数,故B正确;
对于C,y=2-x2是抛物线,且开口向下,在(0,+∞)上是单调减函数,故C错误;
对于D,y=${log}_{\frac{1}{3}}$x在定义域(0,+∞)上是单调减函数,故D错误.
故选:B.

点评 本题考查了基本初等函数的单调性问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.解方程cos(x+$\frac{π}{4}$)=$\frac{1}{2}$,x∈(0,2π),x=$\frac{π}{12}$或$\frac{17π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,A、B、C所对的边分别是a、b、c,且满足下列关系:sin2B≤sin2A+sin2C-sinAsinC.
(1)求证:0<B$≤\frac{π}{3}$.
(2)求函数y=$\frac{1+sin2B}{sinB+cosB}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=ax+b(a>0,且a≠1,a,b均为常数)在[0,1]上的取值区间为[1,3],则a+b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题甲:α=30°,命题乙:sin$α=\frac{1}{2}$,则命题甲是命题乙成立的(  )
A.充分条件而非必要条件B.必要条件而非充分条件
C.充要条件D.非充分条件也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.(1+x)(2x-$\frac{1}{x}$)5的展开式中含x2的项的系数为(  )
A.-80B.-40C.40D.80

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将函数f(x)=sin(2x+$\frac{π}{6}$)的图象向左平移φ(0<φ<$\frac{π}{2}$)个单位得到y=g(x)的图象,|f(x1)-g(x2)|=2的x1,x2,|x1-x2|min=$\frac{π}{4}$,则φ的值是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.(题类A)双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过焦点F1的弦AB长为m(A,B在同一支上),另一个焦点为F2,则△ABF2的周长为(  )
A.4a-2mB.4aC.4a+mD.4a+2m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{|x+a|}{{{x^2}+1}}$(a∈R).
(Ⅰ)当a=1时,解不等式f(x)>1;
(Ⅱ)对任意的b∈(0,1),当x∈(1,2)时,$f(x)>\frac{b}{x}$恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案