精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=\frac{|x+a|}{{{x^2}+1}}$(a∈R).
(Ⅰ)当a=1时,解不等式f(x)>1;
(Ⅱ)对任意的b∈(0,1),当x∈(1,2)时,$f(x)>\frac{b}{x}$恒成立,求a的取值范围.

分析 (1)问题转化为关于x的不等式组,解出即可;(2)问题转化为$a>(b-1)x+\frac{b}{x}$或$a<-[(b+1)x+\frac{b}{x}]$对任意x∈(1,2)恒成立,求出a的范围即可.

解答 解:(1)$f(x)=\frac{|x+1|}{{{x^2}+1}}>1$
?x2+1<|x+1|
?$\left\{\begin{array}{l}x+1≥0\\{x^2}+1<x+1\end{array}\right.$或$\left\{\begin{array}{l}x+1<0\\{x^2}+1<-(x+1)\end{array}\right.$
?0<x<1….(6分)
(2)$f(x)=\frac{|x+a|}{{{x^2}+1}}>\frac{b}{x}$
?$|x+a|>b(x+\frac{1}{x})$
?$x+a>b(x+\frac{1}{x})$或$x+a<-b(x+\frac{1}{x})$
?$a>(b-1)x+\frac{b}{x}$或$a<-[(b+1)x+\frac{b}{x}]$对任意x∈(1,2)恒成立…(10分)
所以a≥2b-1或$a≤-(\frac{5}{2}b+2)$,对任意b∈(0,1)恒成立….(13分)
所以a≥1或$a≤-\frac{9}{2}$…(15分)

点评 本题考查了解绝对值不等式问题,考查函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列函数在区间(0,+∞)上为增函数的是(  )
A.y=cosxB.y=2xC.y=2-x2D.y=${log}_{\frac{1}{3}}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{0.5}x,x>0}\\{-{x}^{2}-4x,x<0}\end{array}\right.$,则f(f(-2))=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$z=\frac{2-i}{1+i}-{i^{2016}}$(i是虚数单位),则|z|=(  )
A.2B.4C.$\frac{{\sqrt{10}}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若纯虚数z满足iz=1+ai,则实数a=(  )
A.0B.-1或1C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,左、右两顶点分别为A1,A2,以A1A2为直径的圆与双曲线的一条渐近线交于点P(点P在第一象限内),若直线FP平行于另一条渐近线,则该双曲线离心率e的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=log($\sqrt{{x}^{2}+1}$+x)+$\frac{1}{{2}^{x}-1}$+1,则f(1)+f(-1)=1;如果f(loga5)=4(a>0,a≠1),那么f(${log}_{\frac{1}{a}}$5)的值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中正确的是(  )
A.x=2是x2-4x+4=0的必要不充分条件
B.在△ABC中,三边a,b,c所对的角分别为A,B,C,若acosA=bcosB,则该三角形△ABC为等腰三角形
C.命题“若x2<4,则-2<x<2”的逆否命题为“若x2≥4,则x≥2或x≤-2”
D.若p∧(¬q)为假,p∨(¬q)为真,则p,q同真或同假

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC内角A,B,C的对边分别是a,b,c,cos$\frac{C}{2}$=$\frac{\sqrt{5}}{3}$,且acosB+bcosA=2,则△ABC的面积的最大值为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案