分析 (I)由题意设数列{an}的首项为a1,公比为q,从而可得a1(1+q+q2)=39,2•2a1q=3a1+a1q2,从而解得;
(Ⅱ)利用对数运算化简可得bn=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),从而求其前n项和,再解不等式即可.
解答 解:(I)由题意设数列{an}的首项为a1,公比为q,
则由题意可得,
a1(1+q+q2)=39,
2•2a1q=3a1+a1q2,
解得,q=1,a1=13或q=3,a1=3;
故an=13或an=3n;
(Ⅱ)∵数列{an}为递增数列,∴an=3n;
∴bn=$\frac{1}{lo{g}_{3}{a}_{n}•lo{g}_{3}{a}_{n+2}}$=$\frac{1}{(lo{g}_{3}{3}^{n})•(lo{g}_{3}{3}^{n+2})}$
=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=b1+b2+…+bn
=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{2}$-$\frac{1}{4}$)+($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{4}$-$\frac{1}{6}$)+…+($\frac{1}{n}$-$\frac{1}{n+2}$)]
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$),
故Tn$>\frac{1}{2}$可化为$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)$>\frac{1}{2}$,
即$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$>0,
故n≥3;
故n的最小值为3.
点评 本题考查了等比数列的性质的应用及对数运算的应用,同时考查了裂项求和法的应用.
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{3}$,2] | B. | B[-$\frac{1}{2}$,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,$\frac{3}{2}$] | D. | [$\frac{3}{2}$,$\frac{5}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ①④ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com