精英家教网 > 高中数学 > 题目详情
8.己知抛物线x2=y上三点A,B,C,且A(-1,1),AB⊥BC,当点B移动时,点C的横坐标的取值范围是(  )
A.(-∞,3]∪[1,+∞)B.(-∞,-2)∪(2,+∞)C.[1,+∞)D.[-3,1]

分析 设B(x1,x12),C(x2,x22),根据AB⊥BC,表示出两直线的斜率相乘得-1,进而可得关于x2的一元二次方程,根据判别式大于等于0求得x2范围.

解答 解:由于B、C在抛物线上,故可设 B(x1,x12),C(x2,x22
∵AB⊥BC,
∴x1≠-1,x2≠-1,x1≠x2
∴$\frac{{{x}_{1}}^{2}-1}{{x}_{1}+1}$•$\frac{{{x}_{2}}^{2}-{{x}_{1}}^{2}}{{x}_{2}-{x}_{1}}$=-1,
即x12+(x2-1)x1-(x2-1)=0.
∵x1∈R,
∴△=(x2-1)2+4(x2-1)≥0,
即x22+x2-3≥0.
解得x2≤-3,x2≥1
故选:A.

点评 本题主要考查了抛物线的应用和抛物线与直线的关系.考查了学生综合分析问题和实际的运算的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知数列{an}满足a1=4,a2=2,a3=1,且数列{an+1-an}为等差数列,则数列{an}的通项公式为(  )
A.an=n-3B.an=$\frac{1}{2}$(n3-8n2+13n+2)
C.an=$\frac{1}{2}$(2n3-17n2+33n-10)D.an=$\frac{1}{2}$(n2-7n+14)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=(x+1)(x-1)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)的反函数为y=1+loga(1-x)(a>0且a≠1),则函数y=f(x+1)-1的图象必过定点(  )
A.(0,-1)B.(1,0)C.(1,-1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,已知点P(-1,0),Q(2,1),直线l:ax+by+c=0,其中实数a,b,c成等差数列,若点P在直线l上的射影为H,则线段QH的取值范围是$[\sqrt{2},3\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求出集合M={x|x2-2x-8=0},并写出其所有子集及真子集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=-x2+|x|的递减区间是(  )
A.[-$\frac{1}{2}$,0]B.[$\frac{1}{2}$,+∞]C.[-$\frac{1}{2}$,0]和[$\frac{1}{2}$,+∞)D.[-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e为自然对数的底数.
(1)若函数f(x)在点(1,f(1))处的切线方程是y=(e-1)x-1,求实数a及b的值;
(2)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(3)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=log3(x2-2ax+5)在区间(-∞,1]内是减函数,则实数a的取值范围[1,3).

查看答案和解析>>

同步练习册答案