分析 由已知及正弦定理可得b=$\sqrt{2}$sinB,利用三角函数恒等变换的应用化简所求即可求值得解.
解答 解:∵a=1,∠A=$\frac{π}{4}$,
∴由$\frac{1}{\frac{\sqrt{2}}{2}}$=$\frac{b}{sinB}=\frac{c}{sinC}$,可得:b=$\sqrt{2}$sinB,
∴$\frac{{\sqrt{2}b}}{sinC+cosC}$=$\frac{2sinB}{sinC+cosC}$=$\frac{2sin(\frac{3π}{4}-C)}{sinC+cosC}$=$\frac{2(\frac{\sqrt{2}}{2}cosC+\frac{\sqrt{2}}{2}sinC)}{sinC+cosC}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题主要考查了正弦定理,三角函数恒等变换的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
| 纤维长度 | (0,100) | [100,200) | [200,300) | [300,400) | [400,500] |
| 甲地(根数) | 3 | 4 | 4 | 5 | 4 |
| 乙地(根数) | 1 | 1 | 2 | 10 | 6 |
| 甲地 | 乙地 | 总计 | |
| 长纤维 | 9 | 16 | 25 |
| 短纤维 | 11 | 4 | 15 |
| 总计 | 20 | 20 | 40 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分必要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 组别 | 步数分组 | 频数 |
| A | 5500≤x<6500 | 2 |
| B | 6500≤x<7500 | 10 |
| C | 7500≤x<8500 | m |
| D | 8500≤x<9500 | 2 |
| E | 9500≤x<10500 | n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{4}{3}$,1) | B. | ($\frac{4}{3}$,2) | C. | (1,$\frac{4}{3}$) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2] | B. | (0,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,2] | D. | [2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com