精英家教网 > 高中数学 > 题目详情
1.在△ABC中,若a=1,∠A=$\frac{π}{4}$,则$\frac{{\sqrt{2}b}}{sinC+cosC}$=$\sqrt{2}$.

分析 由已知及正弦定理可得b=$\sqrt{2}$sinB,利用三角函数恒等变换的应用化简所求即可求值得解.

解答 解:∵a=1,∠A=$\frac{π}{4}$,
∴由$\frac{1}{\frac{\sqrt{2}}{2}}$=$\frac{b}{sinB}=\frac{c}{sinC}$,可得:b=$\sqrt{2}$sinB,
∴$\frac{{\sqrt{2}b}}{sinC+cosC}$=$\frac{2sinB}{sinC+cosC}$=$\frac{2sin(\frac{3π}{4}-C)}{sinC+cosC}$=$\frac{2(\frac{\sqrt{2}}{2}cosC+\frac{\sqrt{2}}{2}sinC)}{sinC+cosC}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题主要考查了正弦定理,三角函数恒等变换的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取20根棉花纤维进行统计,结果如下表:(记纤维长度不低于300mm的为“长纤维”,其余为“短纤维”)
纤维长度(0,100)[100,200)[200,300)[300,400)[400,500]
甲地(根数)34454
乙地(根数)112106
(1)由以上统计数据,填写下面2×2列联表,并判断能否在犯错误概率不超过0.025的前提下认为“纤维长度与土壤环境有关系”.
甲地乙地总计
长纤维91625
短纤维11415
总计202040
附:(1)${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;
(2)临界值表;
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(2)现从上述40根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检
测,在这8根纤维中,记乙地“短
纤维”的根数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若($\sqrt{x}$-$\frac{\sqrt{a}}{x}$)6的展开式中的常数项为60,则a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的通项公式是an=$\frac{{2}^{n}-1}{{2}^{n}}$,其前n项和Sn=$\frac{321}{64}$,则项数n的值等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$f(x)=2sin(ωx-\frac{π}{3})$,则“?x∈R,f(x+π)=f(x)”是“ω=2”的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860  6520  7326  6798  7325
8430  8215  7453  7446  6754
7638  6834  6460  6830  9860
8753  9450  9860  7290  7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为x)
组别步数分组频数
A5500≤x<65002
B6500≤x<750010
C7500≤x<8500m
D8500≤x<95002
E9500≤x<10500n
(Ⅰ)写出m,n的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记C组步数数据的平均数与方差分别为v1,$s_1^2$,E组步数数据的平均数与方差分别为v2,$s_2^2$,试分别比较v1与v2,$s_1^2$与$s_2^2$的大小;(只需写出结论)
(Ⅲ)从上述A,E两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),椭圆C的右焦点F的坐标为$(\sqrt{3},0)$,短轴长为2.
(I)求椭圆C的方程;
(II)若点P为直线x=4上的一个动点,A,B为椭圆的左、右顶点,直线AP,BP分别与椭圆C的另一个交点分别为M,N,求证:直线MN恒过点E(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={x|x<1或x>2},B={x|3x-4>0},则A∩B=(  )
A.(-$\frac{4}{3}$,1)B.($\frac{4}{3}$,2)C.(1,$\frac{4}{3}$)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)满足f(x)=-f(2-x),x∈R,且在[1,+∞)上递增,若g(x)=f(1+x),且2g(log2a)-3g(1)≤g(log${\;}_{\frac{1}{2}}$a),则实数a的范围为(  )
A.(0,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,2]D.[2,+∞)

查看答案和解析>>

同步练习册答案