精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)满足f(x)=-f(2-x),x∈R,且在[1,+∞)上递增,若g(x)=f(1+x),且2g(log2a)-3g(1)≤g(log${\;}_{\frac{1}{2}}$a),则实数a的范围为(  )
A.(0,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,2]D.[2,+∞)

分析 先判断函数f(x)的奇偶性,再判断g(x)的奇偶性和单调区间,化简不等式解得即可.

解答 解:∵函数f(x)对?x∈R满足f(x)=-f(2-x),
∴f(x)的图象关于点(1,0)对称,
∵g(x)=f(1+x),f(x)在[1,+∞)上递增
∴g(x)也为奇函数,并且在(0,+∞)是增函数,
∵g($lo{g}_{\frac{1}{2}}a$)=g(-log2a),2g(log2a)-3g(1)≤g(log${\;}_{\frac{1}{2}}$a),
∴3g(log2a)≤3g(1),
即log2a≤1,
解得:0<a≤2.
故选:A.

点评 本题考查了函数的奇偶性和单调性的综合应用,注意自变量的取值范围,考查了学生的转化能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在△ABC中,若a=1,∠A=$\frac{π}{4}$,则$\frac{{\sqrt{2}b}}{sinC+cosC}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{3}{2}$),离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程,
(Ⅱ)设动直线l:y=kx+m与椭圆C相切,切点为T,且直线l与直线x=4相交于点S.试问:在坐标平面内是否存在一定点,使得以ST为直径的圆恒过该定点?若存在,求出该点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{3x+2}{x+1},x∈(-1,0]}\\{x,x∈(0,1]}\end{array}\right.$且g(x)=mx+m,若方程g(x)=f(x)在(-1,1]内有且仅有两个不同的根,则实数m的取值范围是(  )
A.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把函数f(x)=cos(2x+φ)的图象上所有的点向左平移$\frac{π}{6}$个单位长度后得到y=g(x)的图象,若y=g(x)的一个对称中心是($\frac{π}{6}$,0),则φ的一个可能取值是(  )
A.$\frac{π}{3}$B.$\frac{7π}{12}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设变量x,y满足不等式$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则x2+y2的最小值是(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,并且直线y=x+b是抛物线C2:y2=4x的一条切线.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)设点A,B分别是椭圆C1的左右顶点,F是椭圆C1的左焦点.若过点P(-2,0)的直线与椭圆C1相交于不同两点M,N.
①求证:∠AFM=∠BFN;②求△MFN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在等腰梯形ABCD中,AB∥DC,AB=2,BC=1,∠ABC=60°.动点E和F分别在线段BC和DC上,且$\overrightarrow{BE}=λ\overrightarrow{BC},\overrightarrow{DF}=\frac{1}{9λ}\overrightarrow{DC}$.
(1)当λ=$\frac{1}{2}$,求|$\overrightarrow{AE}$|;
(2)求$\overrightarrow{AE}•\overrightarrow{AF}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面四个推理中,属于演绎推理的是(  )
A.观察下列各式:$\frac{3}{5}$<$\frac{3+1}{5+1}$,$\frac{3}{5}$<$\frac{3+2}{5+2}$,$\frac{3}{5}$<$\frac{3+3}{5+3}$,…,则$\frac{3}{5}$<$\frac{3+m}{5+m}$(m为正整数)
B.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,可得偶函数的导函数为奇函数
C.在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,类似的,在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8
D.所有平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分

查看答案和解析>>

同步练习册答案