| A. | (0,2] | B. | (0,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,2] | D. | [2,+∞) |
分析 先判断函数f(x)的奇偶性,再判断g(x)的奇偶性和单调区间,化简不等式解得即可.
解答 解:∵函数f(x)对?x∈R满足f(x)=-f(2-x),
∴f(x)的图象关于点(1,0)对称,
∵g(x)=f(1+x),f(x)在[1,+∞)上递增
∴g(x)也为奇函数,并且在(0,+∞)是增函数,
∵g($lo{g}_{\frac{1}{2}}a$)=g(-log2a),2g(log2a)-3g(1)≤g(log${\;}_{\frac{1}{2}}$a),
∴3g(log2a)≤3g(1),
即log2a≤1,
解得:0<a≤2.
故选:A.
点评 本题考查了函数的奇偶性和单调性的综合应用,注意自变量的取值范围,考查了学生的转化能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$] | B. | (-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$] | C. | (-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$] | D. | (-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{7π}{12}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{2}}{2}$ | B. | $\frac{9}{2}$ | C. | $\sqrt{5}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 观察下列各式:$\frac{3}{5}$<$\frac{3+1}{5+1}$,$\frac{3}{5}$<$\frac{3+2}{5+2}$,$\frac{3}{5}$<$\frac{3+3}{5+3}$,…,则$\frac{3}{5}$<$\frac{3+m}{5+m}$(m为正整数) | |
| B. | 观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,可得偶函数的导函数为奇函数 | |
| C. | 在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,类似的,在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8 | |
| D. | 所有平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com