精英家教网 > 高中数学 > 题目详情
16.下面四个推理中,属于演绎推理的是(  )
A.观察下列各式:$\frac{3}{5}$<$\frac{3+1}{5+1}$,$\frac{3}{5}$<$\frac{3+2}{5+2}$,$\frac{3}{5}$<$\frac{3+3}{5+3}$,…,则$\frac{3}{5}$<$\frac{3+m}{5+m}$(m为正整数)
B.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,可得偶函数的导函数为奇函数
C.在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,类似的,在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8
D.所有平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分

分析 分别判断各选项,即可得出结论.

解答 解:选项A、B都是归纳推理,选项C为类比推理,选项D为演绎推理.
故选D.

点评 本题考查的是演绎推理的定义,判断一个推理过程是否是演绎推理关键是看它是否符合演绎推理的定义,能否从推理过程中找出“三段论”的三个组成部分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)满足f(x)=-f(2-x),x∈R,且在[1,+∞)上递增,若g(x)=f(1+x),且2g(log2a)-3g(1)≤g(log${\;}_{\frac{1}{2}}$a),则实数a的范围为(  )
A.(0,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足$\left\{\begin{array}{l}x+3≥y\\ x+y≥1\\ x≤1\end{array}\right.$,若直线x+ky=1将可行域分成面积相等的两部分,则实数k的值为(  )
A.$\frac{1}{3}$B.3C.-3D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|2x-1|.
(1)求不等式f(x)+|x+1|<2的解集;
(2)若函数g(x)=f(x)+f(x-1)的最小值为a,且m+n=a(m>0,n>0),求$\frac{4}{m}+\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.袋中有形状、大小都相同的6只球,其中1只白球,2只红球,3只黄球,从中随机先后摸出2只球,在已知摸出第一只球为白球的情况下,第二只球为黄球的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知(2x-1)3=a0+a1x+a2x2+a3x3+a4x4,则a1+a2+a3+a4=(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某程序框图如图,该程序运行后输出的k值是(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知复数z=1+bi(b为正实数),且(z-2)2为纯虚数.
(Ⅰ)求复数z;
(Ⅱ)若$ω=\frac{z}{2+i}$,求复数ω的模|ω|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设实数x,y满足约束条件$\left\{\begin{array}{l}2x-y≥0\\ 2x+y≤6\\ y≥\frac{1}{2}\end{array}\right.$,则$y+\frac{1}{2x}$的最大值为$\frac{10}{3}$.

查看答案和解析>>

同步练习册答案