| A. | $\frac{1}{3}$ | B. | 3 | C. | -3 | D. | -$\frac{1}{3}$ |
分析 作出不等式组对应的平面区域如图,根据三角形的面积的性质求出直线过A,B的中点,求出坐标代入即可.
解答 解:作出不等式组对应的平面区域如图:![]()
则直线x+ky=1过定点C(1,0),
要使直线x+ky=1将可行域分成面积相等的两部分,
则直线x+ky=1经过A,B的中点,
由$\left\{\begin{array}{l}{x=1}\\{x+3=y}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,即B(1,4),
由$\left\{\begin{array}{l}{x+3=y}\\{x+y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$,即A(-1,2),
则A,B的中点D(0,3),代入直线x+ky=1得3k=1,则k=$\frac{1}{3}$,
故选:A
点评 本题主要考查线性规划的应用,根据三角形的面积的性质,定点直线过A,B的中点是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z | B. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z | ||
| C. | [kπ-$\frac{π}{12}$,kπ+$\frac{π}{12}$],k∈Z | D. | [kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$],k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 观察下列各式:$\frac{3}{5}$<$\frac{3+1}{5+1}$,$\frac{3}{5}$<$\frac{3+2}{5+2}$,$\frac{3}{5}$<$\frac{3+3}{5+3}$,…,则$\frac{3}{5}$<$\frac{3+m}{5+m}$(m为正整数) | |
| B. | 观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,可得偶函数的导函数为奇函数 | |
| C. | 在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,类似的,在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8 | |
| D. | 所有平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com