精英家教网 > 高中数学 > 题目详情
11.袋中有形状、大小都相同的6只球,其中1只白球,2只红球,3只黄球,从中随机先后摸出2只球,在已知摸出第一只球为白球的情况下,第二只球为黄球的概率为$\frac{3}{5}$.

分析 设事件A表示“摸出第一只球为白球”,事件B表示“摸出第二只球为黄球”,则P(A)=$\frac{1}{6}$,P(AB)=$\frac{1}{10}$,由此利用条件概率计算公式能求出摸出第一只球为白球的情况下,第二只球为黄球的概率.

解答 解:设事件A表示“摸出第一只球为白球”,事件B表示“摸出第二只球为黄球”,
∵袋中有形状、大小都相同的6只球,其中1只白球,2只红球,3只黄球,从中随机先后摸出2只球,
∴P(A)=$\frac{1}{6}$,P(AB)=$\frac{1}{10}$,
∴摸出第一只球为白球的情况下,第二只球为黄球的概率:
P(B|A)=$\frac{P(AB)}{P(B)}$=$\frac{\frac{1}{10}}{\frac{1}{6}}$=$\frac{3}{5}$.
故答案为:$\frac{3}{5}$.

点评 本题考查概率的求法,涉及到条件概率等知识点,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.把函数f(x)=cos(2x+φ)的图象上所有的点向左平移$\frac{π}{6}$个单位长度后得到y=g(x)的图象,若y=g(x)的一个对称中心是($\frac{π}{6}$,0),则φ的一个可能取值是(  )
A.$\frac{π}{3}$B.$\frac{7π}{12}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,若将f(x)图象上所有点向右平移$\frac{π}{12}$个单位得到函数g(x)的图象,则函数g(x)的单调递减区间为(  )
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈ZB.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z
C.[kπ-$\frac{π}{12}$,kπ+$\frac{π}{12}$],k∈ZD.[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:(x+1)2+y2=8,点A(1,0),P是圆C上任意一点,线段AP的垂直平分线交CP于点Q,当点P在圆上运动时,点Q的轨迹为曲线E.
(1)求曲线E的方程;
(2)若直线l:y=kx+m与曲线E相交于M,N两点,O为坐标原点,求△MON面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.我们知道,如果定义在某区间上的函数f(x)满足对该区间上的任意两个数x1,x2,总有不等式$\frac{{f({x_1})+f({x_2})}}{2}≤f({\frac{{{x_1}+{x_2}}}{2}})$成立,则称函数f(x)在该区间上的向上凸函数(简称上凸).类比上述定义,对于数列{an},如果对任意正整数n,总有不等式$\frac{{{a_n}+{a_{n+2}}}}{2}≤{a_{n+1}}$成立,则称数列{an}为向上凸数列(简称上凸数列),现有数列{an}满足如下两个条件:
①数列{an}为上凸数列,且a1=1,a10=28;
②对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中${b_n}={n^2}-6n+10$,则数列{an}中的第三项a3的取值范围为[7,19].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下面四个推理中,属于演绎推理的是(  )
A.观察下列各式:$\frac{3}{5}$<$\frac{3+1}{5+1}$,$\frac{3}{5}$<$\frac{3+2}{5+2}$,$\frac{3}{5}$<$\frac{3+3}{5+3}$,…,则$\frac{3}{5}$<$\frac{3+m}{5+m}$(m为正整数)
B.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,可得偶函数的导函数为奇函数
C.在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,类似的,在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8
D.所有平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若采用系统抽样方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,抽取的人的编号在区间[241,360]内的人数是(  )
A.7B.6C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$sinα+cosα=-\frac{{\sqrt{5}}}{2}$,且$\frac{5π}{4}<α<\frac{3π}{2}$,则cosα-sinα的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin$\frac{π}{2}$x-1(x<0),g(x)=logax(a>0,且a≠1).若它们的图象上存在关于y轴对称的点至少有3对,则实数a的取值范围是(  )
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.(-∞,-1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

同步练习册答案