精英家教网 > 高中数学 > 题目详情
12.若($\sqrt{x}$-$\frac{\sqrt{a}}{x}$)6的展开式中的常数项为60,则a的值为4.

分析 利用二项式定理的通项公式即可得出.

解答 解:($\sqrt{x}$-$\frac{\sqrt{a}}{x}$)6的通项公式:Tr+1=${∁}_{6}^{r}$$(\sqrt{x})^{6-r}$$(-\frac{\sqrt{a}}{x})^{r}$=$(-\sqrt{a})^{r}$${∁}_{6}^{r}$${x}^{3-\frac{3r}{2}}$,
令3-$\frac{3r}{2}$=0,解得r=2.
∴60=$a•{∁}_{6}^{2}$,解得a=4.
故答案为:4.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C所对边分别为a,b,c,$\frac{sinA}{sinB+sinC}=1-\frac{a-b}{a-c}$.
(I)设$\overrightarrow m=({sinA,1}),\overrightarrow n=({8cosB,cos2A})$,判断$\overrightarrow m•\overrightarrow n$最大时△ABC的形状.
(II)若$b=\sqrt{3}$,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C的对边分别为a,b,c,已知△ABC的外接圆半径为R=$\sqrt{2}$,且tanB+tanC=$\frac{\sqrt{2}sinA}{cosC}$,则角B和边b的值分别为(  )
A.$\frac{π}{6}$,$\sqrt{2}$B.$\frac{π}{4}$,2C.$\frac{π}{3}$,$\sqrt{6}$D.$\frac{3π}{4}$,2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$f(x)=sin(4x+\frac{π}{6})$的最小正周期为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设变量x,y满足约束条件$\left\{\begin{array}{l}{2x-y-1≥0}\\{x-3y+2≤0}\\{x+2y-8≤0}\end{array}\right.$,则目标函数z=(2-z)x+y的最大值为(  )
A.$\frac{3}{2}$B.2C.$\frac{7}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知抛物线C:x2=2py(p>0),P,Q是C上任意两点,点M(0,-1)满足$\overrightarrow{MP}•\overrightarrow{MQ}≥0$,则p的取值范围是(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.袋中有外观相同的红球,黑球各1个,现依次有放回地随机摸取3次,每次摸取1个球,若摸到红球时得2分,摸到黑球时得1分,则3次摸球所得总分为5的概率为(  )
A.$\frac{5}{7}$B.$\frac{6}{7}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,若a=1,∠A=$\frac{π}{4}$,则$\frac{{\sqrt{2}b}}{sinC+cosC}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{3}{2}$),离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程,
(Ⅱ)设动直线l:y=kx+m与椭圆C相切,切点为T,且直线l与直线x=4相交于点S.试问:在坐标平面内是否存在一定点,使得以ST为直径的圆恒过该定点?若存在,求出该点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案