精英家教网 > 高中数学 > 题目详情
4.袋中有外观相同的红球,黑球各1个,现依次有放回地随机摸取3次,每次摸取1个球,若摸到红球时得2分,摸到黑球时得1分,则3次摸球所得总分为5的概率为(  )
A.$\frac{5}{7}$B.$\frac{6}{7}$C.$\frac{3}{8}$D.$\frac{5}{8}$

分析 3次摸球所得总分为5是指3次摸球时两次摸到红球,一次摸到黑球,由此能求出3次摸球所得总分为5的概率.

解答 解:袋中有外观相同的红球,黑球各1个,现依次有放回地随机摸取3次,每次摸取1个球,
摸到红球时得2分,摸到黑球时得1分,
3次摸球所得总分为5是指3次摸球时两次摸到红球,一次摸到黑球,
∴3次摸球所得总分为5的概率p=${C}_{3}^{2}(\frac{1}{2})^{2}(\frac{1}{2})$=$\frac{3}{8}$.
故选:C.

点评 本题考查概率的求法,涉及到n次独立重复试验中事件A恰好发生k次的概率的计算公式的应用,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|0<x<5,x∈Z},B={y|y=3n-2,n∈A},则A∩B=(  )
A.{1}B.{4}C.{1,3}D.{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若复数z满足$2z+z•\overline z={({2-i})^2}$(i为虚数单位),则z为(  )
A.-1-2iB.-1-iC.-1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若($\sqrt{x}$-$\frac{\sqrt{a}}{x}$)6的展开式中的常数项为60,则a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足:a1+2a2+…+nan=4-$\frac{n+2}{{{2^{n-1}}}},n∈{N^*}$.
(1)求数列{an}的通项公式;
(2)若bn=(3n-2)an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的通项公式是an=$\frac{{2}^{n}-1}{{2}^{n}}$,其前n项和Sn=$\frac{321}{64}$,则项数n的值等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$f(x)=2sin(ωx-\frac{π}{3})$,则“?x∈R,f(x+π)=f(x)”是“ω=2”的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),椭圆C的右焦点F的坐标为$(\sqrt{3},0)$,短轴长为2.
(I)求椭圆C的方程;
(II)若点P为直线x=4上的一个动点,A,B为椭圆的左、右顶点,直线AP,BP分别与椭圆C的另一个交点分别为M,N,求证:直线MN恒过点E(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分图象如图所示,则函数表达式为(  )
A.y=-4sin($\frac{π}{8}$x-$\frac{π}{4}$)B.y=-4sin($\frac{π}{8}$x+$\frac{π}{4}$)C.y=4sin($\frac{π}{8}$x-$\frac{π}{4}$)D.y=4sin($\frac{π}{8}$x+$\frac{π}{4}$)

查看答案和解析>>

同步练习册答案