精英家教网 > 高中数学 > 题目详情
19.已知数列{an}满足:a1+2a2+…+nan=4-$\frac{n+2}{{{2^{n-1}}}},n∈{N^*}$.
(1)求数列{an}的通项公式;
(2)若bn=(3n-2)an,求数列{bn}的前n项和Sn

分析 (1)由题意可知:当n=1时,a1=1.当n≥2时,a1+2a2+…+nan=4-$\frac{n+2}{{2}^{n-1}}$,a1+2a2+…+(n-1)an-1=4-$\frac{n+1}{{2}^{n-2}}$,两式相减即可求得数列{an}的通项公式;
(2)由bn=(3n-2)$\frac{1}{{2}^{n-1}}$,采用“错位相减法”即可求得数列{bn}的前n项和Sn

解答 解:(1)当n=1时,a1=4-$\frac{3}{{2}^{0}}$=1.
当n≥2时,a1+2a2+…+nan=4-$\frac{n+2}{{2}^{n-1}}$…①
a1+2a2+…+(n-1)an-1=4-$\frac{n+1}{{2}^{n-2}}$…②
①-②得:nan=$\frac{n+1}{{2}^{n-2}}$-$\frac{n+2}{{2}^{n-1}}$=$\frac{1}{{2}^{n-1}}$(2n+2-n-2)=$\frac{n}{{2}^{n-1}}$
∴an=$\frac{1}{{2}^{n-1}}$,
当n=1时,a1也适合上式,
∴数列{an}的通项公式an=$\frac{1}{{2}^{n-1}}$ (n∈N*).
(2)bn=(3n-2)$\frac{1}{{2}^{n-1}}$,
Sn=$\frac{1}{{2}^{0}}$+$\frac{4}{{2}^{1}}$+$\frac{7}{{2}^{2}}$+…+(3n-5)$\frac{1}{{2}^{n-2}}$+(3n-2)$\frac{1}{{2}^{n-1}}$,…①
$\frac{1}{2}$Sn=$\frac{1}{{2}^{1}}$+$\frac{4}{{2}^{2}}$+$\frac{7}{{2}^{3}}$+…+(3n-5)$\frac{1}{{2}^{n-1}}$+(3n-2)$\frac{1}{{2}^{n}}$,…②
①-②得:$\frac{1}{2}$Sn=1+3($\frac{1}{{2}^{1}}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-1}}$ )-(3n-2)$\frac{1}{{2}^{n}}$
=1+3•$\frac{\frac{1}{2}-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-(3n-2)$\frac{1}{{2}^{n}}$=4-$\frac{3n+4}{{2}^{n}}$,
∴Sn=8-$\frac{3n+4}{{2}^{n-1}}$.
∴数列{bn}的前n项和Sn,Sn=8-$\frac{3n+4}{{2}^{n-1}}$.

点评 本题考查数列的递推公式,等比数列前n项和公式,“错位相减法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知$\overrightarrow{a}$=(-3,2,5),$\overrightarrow{b}$=(1,x,-1),且$\overrightarrow{a}$•$\overrightarrow{b}$=4,则x=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合P=$\left\{{x|-2016≤x≤2017}\right\},Q=\left\{{x|\sqrt{2017-x}<1}\right\}$,则P∩Q=(  )
A.(2016,2017)B.(2016,2017]C.[2016,2017)D.(-2016,2017)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设变量x,y满足约束条件$\left\{\begin{array}{l}{2x-y-1≥0}\\{x-3y+2≤0}\\{x+2y-8≤0}\end{array}\right.$,则目标函数z=(2-z)x+y的最大值为(  )
A.$\frac{3}{2}$B.2C.$\frac{7}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为促进义务教育的均衡发展,各地实行免试就近入学政策,某地区随机调查了50人,他们年龄的频数分布及赞同“就近入学”人数如表:
年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
频数510151055
赞同4512821
(1)在该样本中随机抽取3人,求至少2人支持“就近入学”的概率.
(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取2两人进行调查,记选中的4人支持“就近入学”人数为X,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.袋中有外观相同的红球,黑球各1个,现依次有放回地随机摸取3次,每次摸取1个球,若摸到红球时得2分,摸到黑球时得1分,则3次摸球所得总分为5的概率为(  )
A.$\frac{5}{7}$B.$\frac{6}{7}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A、B、C的对边分别是a,b,c,若λsinA=sinB+sinC(λ∈R).
(Ⅰ)当λ=3,且b=c时,求cosA的值;
(Ⅱ)当A=60°时,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知一个由11人组成的评审委员会以投票方式从符合要求的甲,乙两名候选人中选出一人参加一次活动.投票要求委员会每人只能选一人且不能弃选,每位委员投票不受他人影响.投票结果由一人唱票,一人统计投票结果.
(Ⅰ)设:在唱到第k张票时,甲,乙两人的得票数分别为xk,yk,N(k)=xk-yk,k=1,2,…,11.若下图为根据一次唱票过程绘制的N(k)图,
则根据所给图表,在这次选举中获胜方是谁?y7的值为多少?图中点P提供了什么投票信息?
(Ⅱ)设事件A为“候选人甲比乙恰多3票胜出”,假定每人选甲或乙的概率皆为$\frac{1}{2}$,则事件A发生的概率为多少?
(Ⅲ)若在不了解唱票过程的情况下已知候选人甲比乙3票胜出.则在唱票过程中出现甲乙两人得票数相同情况的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x,y,z为正实数,则$\frac{xy+yz}{{x}^{2}+{y}^{2}+{z}^{2}}$的最大值为(  )
A.$\frac{2\sqrt{3}}{5}$B.$\frac{\sqrt{2}}{2}$C.$\frac{4}{5}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案