精英家教网 > 高中数学 > 题目详情
10.已知集合P=$\left\{{x|-2016≤x≤2017}\right\},Q=\left\{{x|\sqrt{2017-x}<1}\right\}$,则P∩Q=(  )
A.(2016,2017)B.(2016,2017]C.[2016,2017)D.(-2016,2017)

分析 求出Q中不等式的解集确定出Q,找出P与Q的交集即可.

解答 解:由$\sqrt{2017-x}$<1,即0≤2017-x<1,解得2016<x≤2016,即Q=(2016,2017],
P=[-2016,2017],
则P∩Q=(2016,2017],
故选:B

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sinAsinC,且a>c,cosB=$\frac{1}{4}$,则$\frac{c}{a}$=(  )
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某公司生产A、B两种产品,且产品的质量用质量指标来衡量,质量指标越大表明产品质量越好.现按质量指标划分:质量指标大于或等于82为一等品,质量指标小于82为二等品.现随机抽取这两种产品各100件进行检测,检测结果统计如表:
测试指标[70,76)[76,82)[82,88)[88,94)[94,100]
产品A81240328
产品B71840296
(Ⅰ)请估计A产品的一等奖;
(Ⅱ)已知每件A产品的利润y(单位:元)与质量指标值x的关系式为:$y=\left\{\begin{array}{l}-10,x<76\\ 5,76≤x<88\\ 60,x≥88\end{array}\right.$,已知每件B产品的利润y(单位:元)与质量指标值x的关系式为:$y=\left\{\begin{array}{l}-20,x<76\\ 10,76≤x<88\\ 80,x≥88.\end{array}\right.$
(i)分别估计生产一件A产品,一件B产品的利润大于0的概率;
(ii)请问生产A产品,B产品各100件,哪一种产品的平均利润比较高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a>0,b>0,a2+b2-6a=0,则ab的最大值为(  )
A.$\frac{{27\sqrt{3}}}{4}$B.9C.$\frac{81}{4}$D.$\frac{27}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数z(1-2i)=2+i,则z=(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若复数z满足$2z+z•\overline z={({2-i})^2}$(i为虚数单位),则z为(  )
A.-1-2iB.-1-iC.-1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.公差不为0的等差数列{an}的前n项和为Sn,若a2,a5,a14成等比数列,${S_5}=a_3^2$,则a10=19.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足:a1+2a2+…+nan=4-$\frac{n+2}{{{2^{n-1}}}},n∈{N^*}$.
(1)求数列{an}的通项公式;
(2)若bn=(3n-2)an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b垂直”是“平面α和平面β垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案