精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:lg(x2-2x-2)≥0;命题q:0<x<4.若pq为假,pq为真,求实数x的取值范围.

【答案】【解答】由lg(x2-2x-2)≥0,得x2-2x-2≥1,
x≥3,或x≤-1.即px≥3,或x≤-1.
p:-1<x<3.又∵q:0<x<4,
qx≥4,或x≤0.
pq为假,pq为真知pq一真一假,
pq假时,由 x≥4,或x≤-1,
pq真时,由 得0<x<3,
∴实数x的取值范围是{x|x≤-1,或0<x<3,或x≥4},
故{x|x≤-1,或0<x<3,或x≥4}
【解析】根据pq为假,pq为真,作出判断,由判断复合命题的口诀(或命题:有真则真;且命题:有假则假;非命题:真假相反。)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=ax3+bx2+cx的极小值为﹣8,其导函数y=f′(x)的图象经过点 ,如图所示,
(1)求f(x)的解析式;
(2)若对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象

时,列表并填入了部分数据,如下表:

0

0

5

0

)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解

析式;

)将图象上所有点向左平行移动 个单位长度,得到的图

象. 若图象的一个对称中心为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|1<x<2},B={x|2a﹣1<x<2a+1}.
(Ⅰ)若AB,求a的取值范围;
(Ⅱ)若A∩B=,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)若上存在一点,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|a<x<a+5}.
(1)求A∪B,(RA)∩B;
(2)若CB,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,判断条件p是条件q的什么条件:
(1)p:|x|=|y|,qxy
(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;
(3)p:四边形的对角线互相平分,q:四边形是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某市环保局从市区2017年上半年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)

(1)从这15天的数据中任取一天,求这天空气质量达到一级的概率;

(2)从这15天的数据中任取3天的数据,记表示其中空气质量达到一级的天数,求的分布列;

(3)以这15天的PM2.5的日均值来估计一年的空气质量情况,(一年按360天来计算),则一年中大约有多少天的空气质量达到一级.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员400人,每人每年可创利10万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.05万元,但公司需付下岗职员每人每年2万元的生活费,并且该公司正常运转所需人数不得小于现有职员的 ,为获得最大的经济效益,该公司应裁员多少人?

查看答案和解析>>

同步练习册答案