精英家教网 > 高中数学 > 题目详情
已知空间图形的三视图如图,空间几何体的表面积为(  )
A、8πB、10π
C、12πD、9π
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知中的三视图可得该几何体为一圆柱,求出圆柱的底面半径为高,代入圆柱表面积公式,可得答案.
解答: 解:由已知中的三视图可得该几何体为圆柱,
底面直径为1,即底面半径r=1,
高h=4,
故表面积S=2πr(r+h)=10π,
故选:B
点评:本题考查三视图复原几何体形状的判断,几何体的表面积与体积的求法,考查空间想象能力与计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等腰梯形ABCD中,E,F分别是底边AB,BC的中点,把四边形AEFD沿直线EF折起后所在的平面记为α,p∈α,设PB,PC与α所成的角分别为θ1,θ2(θ1,θ2均不为零).若θ12,则满足条件的P所形成的图象是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
6x-y≥8
2x-3y≤0
2x+y≤8
表示的平面区域为r,且函数y=logax的图象经过区域r,则实数a的取值范围是(  )
A、(1,
3
]
B、[
42
3
2
]
C、[
42
3
]
D、[
3
2
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(
1
2
,1)内恒有f(x)>0,则f(x)的单调递增区间是(  )
A、(-∞,-
1
4
B、(-
1
4
,+∞)
C、(-∞,-
1
2
D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-1和2是函数y=x2+bx+c的两个零点,则不等式bx2+bx-c<0的解集为(  )
A、(-1,2)
B、(-2,1)
C、(-∞,-1)∪(2,+∞)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,最小正周期为π的偶函数是(  )
A、y=sin2x
B、y=cos
x
2
C、y=sin2x+cos2x
D、y=
1-tan2x
1+tan2x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x、y满足条件
x≥1
x-y≤0
x+2y-9≤0
,则2x+y的最大值是(  )
A、3B、6C、9D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=-10+t
y=t
 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2-4ρsinθ+2=0.
(Ⅰ)把圆C的极坐标方程化为直角坐标方程;
(Ⅱ)将直线l向右平移h个单位,所得直线l′与圆C相切,求h.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(Ⅰ)证明:直线EG与FH的交点L在椭圆Ω:
x2
4
+y2=1上;
(Ⅱ)设直线l:y=x+m(-1≤m≤1)与椭圆Ω:
x2
4
+y2=1有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求
|PQ|
|ST|
的最大值及取得最大值时m的值.

查看答案和解析>>

同步练习册答案